
.

J
~

' I)

-

•

• \ f.
"(· -

•

··-

•

•

.
•

.
•

' -

t

•

¥ .. 7 --- -

-

-

TRS-BO™
Model III

Operation
nd BASI

Language
Refer nee

n I

1tad1e lhaek®
MA DIVISION OF TANDY CORPORATION

FORT WORTH, TEXAS 76102

TRS-80 Model HI Operation and BASIC
Language Reference Manual: © 1980 Tandy
Corporation, Fort Worth, Texas 76102 U.S.A.
All Rights Reserved.

Reproduction or use, without express written
permission from Tandy Corporation, of any
portion of this manual is prohibited. While
reasonable efforts have been taken in the
preparation of this manual to assure its accuracy,
Tandy Corporation assumes no liability resulting
from any errors or omissions in this manual. or
from the use of the information obtained herein.

Model III System Software: © 1980 Tandy
Corporation and Microsoft. All Rights
Reserved.

The system software in the Model Ill
microcomputer is retained in a read-only memory
(ROM) format. All portions of this system
software, whether in the ROM format or other
source code form format, and the ROM circuitry,
are copyrighted and are the proprietary and trade
secret information of Tandy Corporation and
Microsoft. Use, reproduction or publication of any
portion of this material without the prior written
authorization by Tandy Corporation is strictly
prohibited.

10 9 8 7 6 5 4 3 2

To Our Customers. • •

The TRS-80® Model III Computer is a very powerful tool for business, home and
recreation. Twenty years ago, this capability would have cost hundreds of times as
much as your Model III cost, and would have taken up an entire room.

In spite of its power and internal complexity, the Model III can be quite simple to
operate. In fact, you can determine just how' 'technical'' a machine you want it to
be.

At the simplest level of operation, you can use Radio Shack prepared cassette
programs. All you will need to know is how to load and run a cassette program, and
how to operate the cassette recorder. If this is where you want to start, read
Chapters 1 through 6 of the Operation Section. You may also want to read about
CLO AD and SYSTEM in Chapter 2 of the Language Section.

If you want to write your own programs and you are a beginner, read Chapters 1
through 6 of the Operation Section, then start reading the book, Getting Started
with TRS-80 BASIC. That, plus several other Radio Shack books, can guide you to
becoming a programmer in BASIC and Z-80 language (''machine code'').

If you already know BASIC, and especially if you have experience on a TRS~80

Model I, read the entire Operation Section of this manual, as well as the Appendix
which compares the Model I and Model III. The Model III has many unique
features and some very important differences. A few minutes spent before you
press (ENTER) could save you hours later.

About Manual
This manual contains operating instructions (Section 1) and a description of Model
III BASIC (Section 2 and Appendix). It is arranged for easy reference, whether you
are seeking simple or technical information. Page numbering starts over at the
beginning of each chapter, and chapter numbering starts over at the beginning of
each section. There is a comprehensive Index at the end of this book.

If you are a beginner, don't worry about the technical parts in the Operation
Section. The beginning of each chapter is for you. (When you get to the POKE

statements, you can skip ahead to the next chapter ...) You don't need to read past
Chapter 6. Then, when you learn simple BASIC programming, you can return and
try out all the' 'goodies'' packed into your Model III.

TRS-80 MODEL Ill

C nt nts
Operation Section
A Brief Description of the Computer 1 /1-3

Installation .. 2/1-3

Operation ... 3/1-9
Power-On □ RESET Switch □ Power-Off □ Start-Up Dialog
□ Modes of Operation □ Sample Session

Using the Keyboard 4/1-3
Capitals and Lowercase □ Special Keys □ Control Codes

Using the Video Display 5/1-5
Character Size Cursor □ Scroll Protection □ Text □
Graphics □ Space Compression □ Special Characters

Using the Cassette Interface 6/1-6
Cassette Transfer Speed □ Loading Errors □ Saving a BASIC
Program on Tape □ Loading a BASIC Program from Tape □
How to Search for a Program □ Loading a SYSTEM Tape □
Searching for a Program

Using a Line Printer 7/1-6
Line Printer vs Video Display Output □ Printer Control
Features □ Print Screen Function

Using the RS-232-C Interface 8/1-8
What is an Interface? □ Using the Model Ill as a Terminal □
Programming the RS-232-C

Routing Input/Output 9/1-3
To Route from One Device to Another □ Routing Multiple
Devices

Real-Time Clock. 10/1-3
To Set the Clock □ To Read the Clock □ To Display the Clock

Input/Output Initialization . 11 /1-1

Technical Information . 12/1-26
To Protect High RAM □ ROM Subroutines Memory Map
□ Summary of Important ROM Addresses Summary of
Important RAM Addresses

Troubleshooting and Maintenance . 13/1-3
Symptom/Cure Table □ AC Power Sources □ Maintenance

Specifications. 14/1-3
Power Supply □ Microprocessor □ RS-232-C Interface
□ Parallel (Printer) Interface Cassette Interface

ii

BASIC Language Section
BASIC Concepts 1 /1-30

Commands .. 2/1-7

Input-Output Statements 3/1-13

Program Statements 4/1-15

Strings · 5/1-9

Arrays .. 6/1-6

Arithmetic Functions 7 /1-5

Special Features 8/1-1 O

Editing .. 9/1-7

Appendices
Model Ill Summary A/1-18

Special Characters and Abbreviations □ Commands □ State
ments □ Functions Reserved Words □ Program Limits
Memory Use □ Accuracy □

Error Codes . .. B/1-3

TRS-80 Model m Character Codes C/1-9
Keyboard/Display Characters Graphics □ Special Charac
ters □ Video Display Worksheet □

Internal Codes for BASIC Keywords D/1-2

Derived Functions E/1-2

Base Conversions F/1-4

Model I to Model m Program Conversion Hints G/1-2

Glossary .. H/1-3

RS-232-C Technical Information 1/1-4

Index

For Warranty and Customer Information, see the back cover and
inside back cover.

iii

OPERATION

1 / A Brief Description
The Radio Shack TRS-80® Model III is a ROM-based computer system consisting of:

• A 12-inch screen to display results and other information
• A 65-key console keyboard for inputting programs and data to the Computer
• A Z-80 Microprocessor, the ''brains'' of the system
• A Real-Time Clock
• Read Only Memory (ROM) containing the Model III BASIC Language (fully

compatible with most Model I BASIC programs)
• Random Access Memory (RAM) for ?torage of programs and data while the

Computer is on (amount is expandable from "16K" to "48K". optional extra)
• A Cassette Interface for long-term storage of programs and data (requires a

separate cassette recorder, optional/extra)
• A Printer Interface for hard-copy output of programs and data (requires a

separate line printer, optional/extra)
• Expansion area for upgrading to a disk-based system (optional/extra)
• Expansion area for an RS-232-C serial communications interface (optional/extra)

All these components are contained in a single molded case, and all are powered via
one power cord.

Video Display Screen

Displayable characters include the standard 96 text-characters with the upper and
lowercase alphabet; 64 graphics characters; and 160 special TRS-80 characters. In
addition, there are numerous control and space-compression characters. Some of
the character sets can be switched in and out by BASIC and other programs.

Keyboard

The keyboard allows entry of all the standard text and control characters. It also
includes a 12-key section for convenient numeric entry. From the keyboard, you
can select either all-capitals or upper and lowercase entry. The (BREAK) key is
designed to return control to you during any operation, including cassette
input/output or line printer output. Every key has an auto-repeat feature.

1/1

TRS-80 MODEL Ill

Z-80 Microprocessor

This is the central processing unit-where all the ''thinking'' is done. In the Model
Ill, the microprocessor operates at a speed of over two million cycles per second.

Read Only Memory (ROM)

This is where the Computer's built-in programs are stored, including the TRS-80
BASIC language. TRS-80 BASIC is fully compatible with the Level II language used in
Model I TRS-80' s. Each time you power-on the Computer, this ROM program takes
charge of the microprocessor, enabling you to type in simple BASIC-language
instructions.

The Model III contains a" 14K" ROM, meaning it contains 14 * 1024 = 14336
characters (''bytes'') of permanently programmed memory.

Random Access Memory (RAM)

This is where your programs and results are stored while the Computer is on. It is
erased when you turn the Computer off.

The Model Ill can be equipped with 16K, 32K or 48K of RAM (I K = I 024 bytes).

Peripherals

These are devices you can add to your Computer to increase its usefulness in
programming and data storage. The Model III contains the necessary ''interfaces''
to simplify the addition of many peripherals.

Cassette

For long-term storage of programs and data, simply connect a cassette recorder to
the Computer, and save the information on tape.

For program storage, you may select either High or Low transfer rates (use Low for
compatibility with Model I, High for faster saves and loads).

1/2

Printer
You may connect any Radio Shack' 'parallel interface'' printer to the Model III;
this will give you "hard-copy" capability for program listings, reports, mailing
lists, invoices, etc.

Other Enhancements

The Model III contains space for a mini-disk controller and one or two mini-disk
drive units. The Computer will accommodate one or two external drive units as
well.

With a one-, two-, three- or four-drive system, you will be able to store and retrieve
programs and data both quickly and reliably. Your Computer will then be under the
control of TRSDOS®, the powerful Radio Shack Disk Operating System.

You can also add an internal RS-232-C serial interface. This will allow your
computer to communicate with an RS-232-C equipped computer, serial line printer
or other serial device.

1/3

2 I Installation
Carefully unpack the Computer. Remove all packing material and save it in case
you ever need to transport the Computer. Be sure to locate all cables, papers, etc. ,
that may be included in the shipping carton.

Place the Computer on the surface where you '11 be using it. An appropriate power
source should be nearby, so that no extension cord will be required.

Do not connect the Computer to the AC power source yet.

Connection of Peripherals

Before connecting any peripherals (for example, line printer and cassette recorder),
make sure the Computer and the peripheral devices are turned off.

Connect all peripherals to the appropriate jacks on the bottom and rear of the
Computer. Refer to Figure 1 for location of connection points. For interconnections
between cables and peripherals, refer to the Owner's Manual supplied with the
peripheral device.

Note: All cables should exit to the rear of the unit so that no binding occurs.

2/1

TRS-80 MODEL Ill

On/Off Switch

Disk Expansion Jack. Shown with cable
connected. Cable is supplied with external
drives (optional/extra).

Parallel Printer Jack. Shown with cable con
nected. Cable and printer are optional/extra.

RS-232-C Jack. Shown with cable
connected. Cable and RS-232-C Interface
are optional/extra.

G

0
e
0

1/0 Bus Jack. For future expansion.

Cassette Jack. Shown with cable con
nected. Cable and cassette recorder are
optional/extra. Black mini-plug connects to
recorder EAR; gray mini-plug to recorder
AUX; gray submini-plug to MIC REMote con
trol.

AC Power Cord.

Video Contrast Adjustment.

Video Brightness Adjustment.

Figure 1. Connection of peripherals and location of controls.

2/2

Connection of a Cassette Recorder

The following instructions use the CTR-80A recorder (Radio Shack Catalog Number
26-1206) as an example. If you use a different recorder, connection and operation
may vary.

Note: You do not need to connect the Cassette Recorder unless you plan to record
programs orto load taped programs into the TRS-80.

A TRS-80 to Cassette Recorder connection cable is included with the CTR,80A; we
suggest that you use this specially designed cable.

1. Connect the short cable (DIN plug on one end and three plugs on the other) to the
TAPE jack on the back of the Computer. Be sure you get the plug to mate
correctly.

2. The three plugs on the other end of this cable are for connecting to the recorder.
3. A. Connect the black plug into the EAR jack on the side of the recorder. This

connection provides the output signal from the recorder to TRS-80 (for
loading Tape programs into TRS-80).

B. Connect the larger gray plug into the AUX jack on the recorder. This
connection provides the recording signal to record programs from the
TRS-80 onto the tape.

Leave the AUX plug in whether you are recording or playing back
cassette data.

C. Connect the smaller gray plug into the smaller MIC jack on the recorder.
This allows the TRS-80 to automatically control the recorder motor (turn
tape motion on and off for recording and playing tapes.)

Note: Do not plug a remote microphone or a dummy plug into the larger MIC jack.

Connection to an AC Power Source

Make sure the Computer and all peripherals are off.

The AC Power Cord exits from the rear of the Computer. Connect it and all
peripherals to an appropriate power source. Power requirements for Radio Shack
products are specified on the units and in the Owner's Manual Specifications.

For convenience, you may connect all components to a single' 'power strip'' such
as Radio Shack's 26-1451 Line Filter. This will allow you to turn on the entire system
with a single switch. Take care not to exceed the current capacity of the power strip.

2/3

3 / Operation

Power-On

The following instructions explain how to start up and use the Model III as a
ROM-based system only.

If you have a Disk System and are going to load TRSDOS, follow the power-up
instructions given in the Model III Disk System Owner's Manual. If you have a
Disk System but you are not going to load TRSDOS, read the instructions later in this
chapter.

The Computer and all peripherals must be off.

First turn on all peripherals, then turn on the Computer. (If you have all the
components connected to a power strip, just turn on the power strip.)

After a few seconds, the following message should appear on the Video Display:

Cass?

The meaning of this message will be explained later.

If the message does not appear:

A. The Video Display may need Brightness or Contrast adjustment. See Figure l
for location of these controls.

B. If the message still doesn't appear, then turn off the entire system; recheck all
connections, and try again. For further assistance, see' 'Troubleshooting and
Maintenance.''

Do not turn any peripherals off while the Computer is in use; to do so could cause
abnormal operation (the Computer could restart or' 'hang up'', requiring you to
reset or turn the system off and on again).

3/1

TRS-80 MODEL Ill

RESET
RESET is the orange-colored button at the upper right corner of the keyboard.
To' 'start over'' at the power-on message, you do not have to tum the unit off and
on again. Pressing the RESET button will have the same effect.

Note: Resetting the Computer does not erase the contents of RAM. However, the
BASIC language interpreter will start over, thus' 'losing'' any program or data you
had in memory.

To interrupt a program or operation without losing your BASIC program and data,
hold down the (BREAK) key.

Power-Off

First tum off the Computer, then all other peripherals.

If you tum the Computer off for any reason, leave it off for at least 15 seconds before
turning it back on again. The Computer's power supply needs this time to discharge
its stored energy before starting up again.

Whenever you tum off the Computer, all programs and data are erased. So be sure
to save your information (e.g., on cassette) before turning off the Computer.

Start-Up Dialog

When you tum on or reset the Computer, it asks you two questions. First:

Cass?

This question lets you determine the rate at which programs and data will be
transferred to and from cassette. You can select either Low (500 baud) or High (1500

baud). Type

L

for Low, or

H
for High.

3/2

If you press (ENTER) without typing anything, High will be used.

For further details, see ' 'Using the Cassette Interface. ' '

Next the Computer will ask:

Memory Size?

This question lets you set an upper limit to the RAM which will be used to store and
execute your BASIC programs. Simply press (ENTER) in response to this question.
This tells the Computer to make the full amount of RAM available for use by your
BASIC program.

Advanced programmers may want to reserve some memory for a
machine-language ("Z-80") program or subroutine. Instructions for doing this are
included in the' 'Technical Information'' chapter.

After you respond to the '' Memory Size'' question, BASIC will start with this
message:

Radio Shack Model 111 Basic
(c) '80 Tandy
READY
>

The Computer is now ready for use.

3/3

TRS-80 MODEL Ill

Modes of Operation
BASIC has four modes of operation:
• Immediate mode-for typing in program lines and immediate lines
• Execute mode-for execution of programs and immediate lines
• Edit mode-for editing program and immediate lines
• System mode--for loading machine-language tapes and for transferring control

to machine-language programs

Immediate Mode

Whenever you enter the immediate mode, BASIC displays a header and a special
prompt:

READY
>

(header)
(prompt followed by blinking block ''cursor'')

While you are in the immediate mode, BASIC will display the prompt at the
beginning of the current logical line (the line you are typing in).

In the immediate mode, BASIC does not take your input until you complete the
logical line by pressing (ENTER). This is called '' line input'', as opposed to
"character input".

Interpretation of an Input Line
BASIC always ignores leading spaces in the line-it jumps ahead to the first
non-space character. If this character is not a digit, BASIC treats the line as an
immediate line. If it is a digit, BASIC treats the line as a program line.

For example:

PRINT "THE TIME IS"; TIME$ (ENTER)

BASIC takes this as an immediate line.

If you type:

10 PRINT "THE TIME IS"; TIME$ (ENTER)

BASIC takes this as a program line.

Immediate Line

An immediate line consists of one or more statements separated by colons. The line
is executed as soon as you press (ENTER). For example:

CLS: PRINT "THE SQUARE ROOT OF 2 IS"; SQR(2)

is an immediate line. When you press (ENTER), BASIC executes it.

3/4

Program Line

A program line consists of a line number in the range [0,65529], followed by one or
more statements separated by colons. When you press (ENTER), the line is stored in
the program text area of memory, along with any other lines you have entered this
way. The program is not executed until you type RUN or another execute command.
For example:

100 CLS: PRINT "THE SQUARE ROOT OF 2 IS"; SQR(2)

is a program line. When you press (ENTER), BASIC stores it in the program text area.
To execute it, type:

RUN(ENTER)

Special Keys in the Immediate Mode

CT)

0

0

The question mark can stand for the commonly used keyword
PRINT. For example, the immediate line:

?"HELLO."

is the same as the immediate line:

PRINT"HELLO."

Note: L? does not mean LPRINT.

This abbreviation can be used in a program, too.

The period can stand for '' current program line'', i.e., the last
program line entered or edited. The period can be used in most
places where a line number would normally appear. For example,
the immediate line:

LIST.

tells BASIC to list the current program line.

The single-quote tells BASIC to ignore the rest of the logical line. It
is an abbreviation for the BASIC keyword REM. When used in a
multi-statement line, it does not have to be preceded by a colon.
For example, when you type in the line:

PRINT 1 + 1; '2+2

BASIC will print the sum 1 + 1 but not 2 + 2.

This abbreviation can be used in a program, too.

(SHIFT)(l)0 Causes the Computer to print the Display contents to the line
printer, if available. Press (BREAK) to interrupt this operation. This
key sequence works in the other modes too.

3/5

TRS-80 MODEL Ill

Execute Mode

Whenever BASIC is executing statements (immediate lines or programs) it is in the
execute mode. In this mode, the contents of the Video Display are under program
control.

Special Keys in Execute Mode

(SHIFT) @Pauses execution. Press any key to continue.

(BREAK) Terminates execution and returns you to the command mode.

Edit Mode

BASIC includes a line editor for correcting program lines. To edit a program line,
type in the command:

EDIT line number

where line number specifies the desired line.

When the editor is working on a program line, it displays the number of the line
being edited.

In the edit mode, the Keyboard input is character-oriented, rather than
line-oriented. That is, BASIC takes characters as soon as they are typed in-without
waiting for you to press (ENTER).

See the chapter on editing (Section 2) for details.

System Mode

In this mode, you can load and execute machine-language programs. By
''machine-language'', we mean the set of machine instructions recognized by your
Computer's Z-80 microprocessor. In this manual, we will usually call it "Z-80"

programming, in contrast to BASIC programming.

You don't have to understand the Z-80 language to use some of the programs
available. For example, several Radio Shack games are written in Z-80 code rather
than in BASIC. To load such programs from tape, you use the System Mode.

Z-80 programming opens up whole new worlds of possibilities, but it is somewhat
more demanding than BASIC programming.

3/6

The Technical Information chapter in this manual is written for those who are
familiar with the Z-80 instruction set and other fundamental machine concepts. If
you would like to explore these subjects, read:

TRS-80Assembly Language Programming, by William Barden, Jr. Radio Shack
Catalog Number 62-2006.

Although the book was originally written for the TRS-80 Model I, it applies almost
exactly to the Model III as well.

For further details, see '' Cassette Interface'' in this Operation Section, and SYSTEM

in the Language Section.

Sample Session

This section will give you a step-by-step example of what's needed to type in a
program and run it. We will be showing you the Computer/operator dialog exactly
as it appears on the Display. If you have never used a computer keyboard before,
read Using the Keyboard before trying this sample session.

You don't need to know BASIC programming to go through this session-it is just
an exerciser. If you are curious about the words used in this program, look them up
on the Quick Reference Card supplied with your Computer, or in the Index of this
manual.

Special Notation Used in this Dialog

BOLDFACE MA TE RIAL Provided by the Computer-you don't type
it in.
Means' 'Press the (ENTER) key.''

This tells you to use the upper/lower
case-caps only switch. You do this by
pressing (SHIFT) and CID together.
This means' 'press the 8 key'' to skip over
to the next eight-column boundary. We
usually do this just for visual effect.

3/7

TRS-80 MODEL Ill

Answering the Start-Up Questions

Reset the Computer. Then follow this session.

Cass? (ENTER)

Memory Size? (ENTER)

Radio Shack Model Ill Basic

(c) '80 Tandy

READY

>

The blinking block after''>'' is the ''cursor''. It tells you where the next character
you type will be displayed.

Now continue:
>NEW~~
READY
>AUTO (ENTER)
10 CLS ((NTER)
20 PRINT "Hl-l'M YOUR TRS-80 MICROCOMPUTER!" (ENTER)
30 PRINT "(SHIFT) CID What makes me so smart? "(SHifJ) CID (ENTER)
40 PRINT "(SHIFT) (ID Millions of these: "(SHIEI) (ID (ENTER)
50 PRINT CHR$(21) (ENTER)
60 FOR I = 1 TO 256 (ENTIB)
70 ~ PRINT CHR$(253); CHR$(254); (ENTER)
80 NEXT I (ENTER)
90 PRINT CHR$(21) (ENTER)
100 END ([NTER)
110CBREAK)
READY
>

Now the program is in memory. To look at it, type:

>LIST (ENTER)

It should look like this:

10 Cl...S
20 PRINT "HI! I'M YOUR TRS-80 MICROCOMPUTER!"
:10 PR I NT II Whi:i i: makes me ;:. o s.mi:3.r· i:?"
40 PRINT "Millions of these:"
50 PRINT CHR$(21)
60 FOR I= 1 TO 256
70 PRINT CHR$(253); CHR$(254);
80 NEXT I
90 PRINT CHR$(21)
100 END

3/8

Check each line. Don't worry about spacing; however, if anything else is different,
simply re-type the incorrect line. For example, suppose you mistakenly type in line
90 like this:

90 PRINT CHR$(201)

To corre~t it, simply type:

>90 PRINT CHR$(21) (ENTER)

> ■

When everything is correct, you can run the program by typing:

>RUN (ENTER)

3/9

4 / Using the Keyboard
The keyboard allows entry of all the standard text and control characters. As with
ordinary typewriters, use (SHIFT) to enter the upper symbol on those keys contain
ing two symbols. For example, to enter a"!", press (SHIFT) (D.

Capitals and Lower Case (SHIFT)(ID

The A-Z keys can produce either upper or lowercase characters. There are two
modes of operation: CAPS, in which the A-Z keys always produce capital letters; and
ULC (upper/lowercase), in which the A-Z keys produce lowercase unless you press
(SHIFT).

When you start the Computer, the keyboard is in the CAPS mode. To switch to ULC,

press (SHIFT)(ID. To switch back, press (SHil:D (ID again. (SHIFT) (ID is a "toggle":
each time you press it, you switch from one mode to the other.

Special Keys

Certain keys have special functions in BASIC. Rather than accepting them as
keyboard data, BASIC performs the specified function.

Key

8
8
(SHIFT)(3

(SHIFT)8

(SHIFT)(@

(ENTER)

Function

Backspaces and erases the last character typed.

Tabs over to the next eight-column boundary.

Starts over at the beginning of the line.

Converts to 32 characters/line.

Pauses program execution. Press any key to continue.

Enters the line. BASIC will not interpret a line until you
press (ENTER).

Cancels the current line, erases the display, converts to
64 characters/line, and positions the cursor to the upper
left comer(' 'home'').

4/1

TRS-80 MODEL Ill

Special Keys, continued.

Other Features

Interrupts the current program or operation and
prepares the Computer for another keyboard command.
Use to cancel a cassette or line printer operation, or to
break out of a BASIC program.

Activates the Print Screen function, copies the contents
of the Screen to the Printer. Press (BREAK) to terminate
this function and return to the immediate mode.

Every key has a repeat feature: when you hold a key down for approximately one
second, that key begins producing a stream of characters.

The keyboard includes a 12-key section for convenient numeric entry. Each of
these keys is equivalent to the matching key on the standard keyboard section.

Control Codes*

* If you are unfamiliar with the concept of character codes, see the ASCII entry in the
Glossary (Appendix). Also see the table of character codes in the Appendix.

You can produce 32 special control characters (ASCII Codes 0-31) from the
Keyboard. For example,

Key ASCII Name Code

8 Backspace 8

8 Tab 9

co Line Feed 10
(ENTER) Carriage Return 13

4/2

You are not limited to these specially labeled keys. A special two-key combination
allows the regular text keys to create additional control characters. Use this
procedure:

1. Hold down (SHIFT)
2. Hold down (£)
3. While holding down (SHIFT) and(!), press the desired character. For example:

(SHIFT)(!)© = "Control C" = Code# 3.

For a complete list of keyboard characters available, see the Appendix.

4/3

5 / Using the Video Display

Character Size

There are 16 lines on the display, and two character sizes: normal (64 characters per
line-"cpl"), and double-size, or 32 cpl.

The Computer starts in the 64 cpl mode. To change to 32 cpl, press (SHIFT)(3 in the
immediate mode or execute the BASIC statement:

PRINT CHR$(23)

To return to 64 cpl, press (CLEAR) in the command mode, or execute the BASIC

statement:

CLS

Cursor

The cursor indicates the current display position. When you start BASIC, the cursor
is a blinking block. You can change the cursor character and you can make it solid
(non-blinking).

Memory location 16412 contains the blink/non-blink status. When it contains a
zero, a blinking cursor will be used. When it contains a non-zero value, a
non-blinking cursor will be used.

For example, to make a solid cursor, execute the BASIC statement:

POKE 16412, 1

To make a blinking cursor, execute the BASIC statement:

POKE 16412, 0

Memory location 16419 contains the ASCII code of the cursor character. When you
start BASIC, this address contains 176. To change the cursor, use the POKE

statement. For example,

POKE 16419, 63

changes the cursor to a"?", since 63 is the ASCII code for a question-mark.

5/1

TRS-80 MODEL Ill

You can select any ASCII code from zero to 255.

To restore the cursor to its original character, execute this BASIC statement:

POKE 16419, 176

To turn the cursor on in the execute mode, execute the statement

PRINT CHR$(14)

To turn it off, use

PRINT CHR$(15)

Scroll Protection

Display ''scrolling'' occurs when the Computer moves all the text up one line to
make room for a new line on the bottom row of the Display. When scrolling occurs,
the top line on the Display is erased from the Display.

The Model III will let you protect from scrolling up to seven lines on the top of the
Display. For example, suppose you are printing a table. You can put the column
headings in a scroll protect area, so they will not be lost when scrolling takes place.

Memory location 16916 controls the size of the scroll protect area. A zero in this
one-byte location means no lines are protected. A one means one line (the top line)
is protected. And so forth.

For example, to protect the top four lines from scrolling, execute the BASIC

statement:

POKE 16916, 4

To restore the display to its original condition (no scroll-protect), execute the BASIC

statement:

POKE 16916,0

If you store a value greater than seven in this address, the Computer interprets the
value in modulo eight. That is, the number is divided by eight and the remainder is
used.

The following program demonstrates the scroll-protect feature:

10 CLS: POKE 16916,3 'PROTECT TOP 3 LINES
20 PRINT "THESE TOP THREE LINES WILL NOT BE SCROLLED"
30 PRINT "BUT THE REST OF THE SCREEN WILL."
40 PRINT"--"
50 FOR I= 1 TO 100
60 PRINT "THIS LINE IS IN THE NON-PROTECTED AREA SO WILL SCROLL"
70 NEXT I
80 POKE 16916,0 'REMOVE SCROLL PROTECTION

5/2

Text Characters

The Model III Display can produce the standard ASCII text characters, including the
upper and lowercase alphabet.

All text characters are created on an eight-by-eight matrix for excellent definition.

The following BASIC program will display all 96 text codes and characters:

1 {ZJ CL.S
20 FOR I= 32 TO 127
311j PRINT <i) <I-:32) ·M- 8, I; CHR~i;(I);
4G1 NEXT I

Many of these characters can be keyed in directly from the keyboard; others can
only be generated by reference to their ASCII codes.

Note: The (1) key is echoed on the display as [instead of as an up-arrow. This is
because Model III produces standard ASCII characters on its display. However, if
the program calls for an up-arrow, the left-bracket will serve the same purpose.

Graphics Characters

The Model III Display has 64 graphics characters, consisting of all possible on-off
combinations in a two-by-three matrix:

The graphics characters are produced by codes 128 through 191. The following
program will display them all:

10 CLS
20 FOR I= 128 TO 191
30 PRINT@ CI-128) * 8, I; CHRS(I);
40 NEXT I

5/3

TRS-80 MODEL Ill

Space Compression Characters

When you start BASIC, characters 192 through 255 are defined as space compression
codes: 192 generates zero spaces: 193, one space; and so forth, up to 255, which
generates 63 spaces.

These codes are useful for storing Video Display text in a minimal amount of
memory. For example, the following line contains 55 characters (superior numbers
indicate the number of blank spaces between letters):

21 spaces 18 spaces

NAME ADDRESS PHONE

There are two sequences of blanks containing a total of 39 characters. By replacing
the two space-sequences with two compression codes, we can save 39 - 2 = 37

characters.

When the data is displayed, the space compression codes will be ''expanded'' into
the appropriate number of spaces.

The following BASIC program illustrates this example:

5 CU3
10 POKE 16526, 105 'LSB OF $INITIO ENTRY ADDRESS
20 PO~~E 16527, 0
30 X :::: US R (0)
L~0 CLEAR :l00

'MSB
'CALL $INITIO

50 AS= "NAME" + CHRS(192+21) + "ADDRESS"
11 PHONE"
60 PRINT "THE LENGTH OF THE STRING IS"; LEN(A$)
70 PRINT "HERE IT IS: 11

80 PRINT A$

Special Characters

The Model III also features 96 special characters. The first 32 may be displayed by
POKEing the appropriate code into video RAM (addresses 15360 to 16383); the
remaining 64 may be displayed via the PRINT statement.

This program will display the first 32:

10 CLS
20 FOR I= 0 TO 31
30 POKE 15360 +I* 16, I
4(1 NEXT I
50 PRINT @ 6'+0, 11 11

;

5/4

+ CHR$(192+l8) +

The remaining 64 must first be '' switched in'' and then may be displayed via PRINT.

Codes 192 through 255 normally function as space compression codes; however, a
software switch will activate the special character set. The statement:

PRINT CHR$(21)

switches back and forth between space compression and special characters.

Another software switch selects an alternate set of special characters (Japanese
Kana characters). Each time you execute the statement

PRINT CHR$(22)

the active/inactive sets are swapped.

The following program will switch in the special characters and display both sets of
them.

5 CL..S
10 POKE 16526, 105
20 POKE 16527, 0
3tlJ X =--= US R (12))

'LSB OF SINITIO ENTRY ADDRESS
., MSB
'CALL.. SINITIO

40 PRINT CHR$(21)
50 INPUT "PRESS <ENTER>
60 FOR I= 192 TO 255
70 PRINT CHRS(I);

'SWITCH IN SPECIAL CHARACTERS
TO SEE SPECIAL CHARACTERS"; X

80 NEXT I
90 PRINT
100 INPUT
110 PFHNT
120 INPUT
1::50 PRINT

"PRESS <ENTER> TO SWITCH TO ALTERNATE SET"; X
CHR$(22); 'SWITCH IN ALTERNATE SET
"PRESS <ENTER> TO RETURN TO NORMAL AND END"; X
CHR$(22); CHR$(21}

5/5

6 I Using the Cassette Interface
Model Ill's built-in cassette interface allows you to store data and programs with a
cassette recorder such as Radio Shack's CTR-80A, Catalog Number 26-1206.

Connect the recorder to the Computer according to Figure 1 in this manual; for
further connection instructions, refer to the cassette recorder owner's manual.

Cassette Transfer Speed

As explained previously, you select either Low or High cassette speed when you
start BASIC.

If you want to load Model I Level II programs, you must select Low.

(The actual speed for Low is 500 baud, which is approximately 63 characters per
second; for High, 1500 baud, or 190 characters per second. For short programs, you
won't notice a three-to-one difference in loading times, due to the' 'overhead''
required by any taped data. However, for longer programs, the difference in
loading/saving times will approximate three-to-one.)

You do not have to restart BASIC to change the cassette speed. This speed is
determined by the contents of memory address 16913. When this one-byte location
contains zero, Low speed (500 baud) is used; when it contains any non-zero value,
High speed (1500 baud) is used.

For example, to select 500 baud, execute the BASIC statement:

POKE 16913, 0

To select 1500 baud, execute the BASIC statement:

POKE 16913, 1

6/1

TRS-80 MODEL Ill

Loading Errors

There are three messages that may appear in the upper right of the Display during a
tape input operation. They tell you that the tape operation was unsuccessful and
needs to be repeated.

Message

C*

D*

BK

Meaning

Checksum Error during loading of a SYSTEM tape

Data Error during loading of a BASIC program

You pressed (BREAK) and cancelled the operation

The first two errors may be caused by an incorrect volume setting. Adjust the
volume and try again. If you still have problems, recheck the cassette recorder
connections. Another possible cause is dirty recorder heads. Clean the heads as
explained in the cassette owner's manual. If none of this helps, the data on the tape
may have been destroyed by static electricity or some other cause.

Saving a BASIC Program on Tape

When you want a long-term copy of a BASIC program (one that won't have to be
typed in again), simply save it on tape with the CSA VE command.

The program should be in memory. Be sure you have selected the desired cassette
transfer speed (500 or 1500 baud). In general, you should use 1500 baud, since it is
faster and requires less tape.

1. Insert a blank cassette into the recorder (use Radio Shack's leaderless tape for
best results).

2. Prepare the recorder to RECORD.

3. Type :

CSA VE "P" (ENTER)

The Computer will save the program on tape.

When the process is completed, the Computer will display:

READY
>■

In this example, we used "P" as the file name; you can choose any single character
except a double-quote. Enclose the character in double-quotes as shown in our
example.

6/2

It is a good idea to save the program at least twice, preferably on separate cassettes.
That way, if one cassette is lost or erased, you have an extra copy.

When you want to load the program in later, you can specify the file name, in which
case BASIC will search for that file name; or you can omit the file name, in which
case BASIC will load the first program on the tape.

Loading a BASIC Program from Tape

Be sure the Computer's cassette speed matches that of the recorded program (the
speed at which it was CSA VEd).

1. Prepare your recorder to PLAY the recorded cassette. Adjust the volume to the
level recommended for 500 or 1500 baud. See Figure 2 on the next page.

2. Type:

CLOAD (ENTER)

The Computer will load the first program on the tape. While the program is
loading, two asterisks will appear on the upper right of the Display. The one on
the right will blink after every 64th character of data is received.

When the program is loaded, the Computer will display the message:

READY

>■

3. Type:

LIST (ENTER)

to list the program you have just loaded (just for verification).

4. You may now run the program by typing:

RUN (ENTER)

6/3

TRS-80 MODEL Ill

How to Search for a Program

If the tape contains different programs on the same side, you can make the
Computer search through them until it reaches the desired program. To do this, just
specify the name of the program. For example, if the program is named "P", then
type in this command:

CLOAD "P" (ENTER)

While the Computer is skipping a non-matching program, it will display the file
name of that program.

Note: If the program you named is not on the tape, the Computer will continue to
wait for it, even after the tape has run out. Hold down the (BREAK) key until the
Computer returns with the message:

READY
>

Recorder
Model

CTR-80, BOA

User-Generated Pre-Recorded From
Radio Shack

5-7 4-6

Figure 2. Recommended levels for loading programs from
tape.

6/4

Loading a SYSTEM Tape

In addition to BASIC programs, you may load machine-language programs from
tape. Such programs are stored in a different format on the tape; we call them
SYSTEM tapes. Radio Shack sells several machine-language programs on cassette,
for example, Micromusic and Editor/ Assembler.

You can also create your own SYSTEM tapes, using the Editor/ Assembler Package.

Before loading the tape, be sure the Computer's cassette speed matches that of the
recorded program.

I. Prepare your recorder to PLAY the recorded cassette. Adjust the volume to the
level recommended in Figure 2.

2. Type:
SYSTEM (ENTER)

The Computer will display the monitor mode prompt:

*?

3. Type in the program's file name. For example, if the program is named
EDTASM, you would type:

EDT ASM (ENTER)

The Computer will load the program. While the program is loading, two
asterisks will appear on the upper right of the Display. The one on the right will
flash after every 64th character of data is received.

4. When the Computer has loaded the program, it will display another monitor
prompt:

*?

What you do next depends on the program you have just loaded.

A. If you want to load another program, then prepare the next cassette tape and
repeat Step 3.

B. If you want to return to BASIC, then press (BREAK).

C. If you want to run the machine-language program you just loaded, then type in a
slash symbol"/" followed by the "entry address" and press (ENTER), or simply
type in the''/'' and press (ENTER). Specific instructions will be provided with
the SYSTEM tape.

6/5

6/6

TRS-80 MODEL Ill

For example, to start the program at address 32000, type:

*? I 32000 @£ll.ID

To start the program at the address specified by the SYSTEM tape, type:

*? I (ENTER)

7 /UsingALinePrinter

Any Radio Shack ''parallel interface'' printer may be connected to the Model III.
There are some differences in printer functions available, so check in the printer
owner's manual for these details.

Line Printer vs Video Display

Output

Output to the line printer is similar to display output; in fact, for the two major
display output operations, there are two matching line printer output operations:

Video Display Line Printer

PRINT LPRINT
LIST LUST

These are described in the BASIC Language Section of this manual.

When you try to output information to the printer, the Computer will first see if a
printer is connected and ready to accept the data. If it is not, the Computer will
simply wait until the printer is available. During this time, you will not be able to
type in instructions from the keyboard.

To regain keyboard control in this situation, hold down the (BREAK) key until the
Computer displays

READY
>

Certain of the Video Display features are not available on the printer. For example:

• The graphics and special character sets cannot be output to the printer. However,
your printer may have its own special characters or ''graphics''. Check in the
owner's manual.

• The CLS and PRINT@ statements have no line-printer counterparts.

7/1

TRS-80 MODEL Ill

Printer Control Features

Output to a printer involves several variables:

• Maximum line width (How many print columns are there?)

• Page length (How many print lines are on a page?)

• Printer status (Is the printer connected and ready to receive data and print it?)

In this section, we will explain how to set up the Model III to control all these
variables.

Setting the Maximum Line Length

In Model III BASIC, you can preset the maximum line length. If a line exceeds the
preset length, the Computer will automatically insert an end of line (carriage return)
so that the rest of the line will be output on a new line. The following paragraphs
explain why you may want to do this.

One important difference between display output and printer output is the
maximum line length. (A' 'line'' is a stream of data characters terminated by a
carriage return (ENTER).)

The Model III Display has a maximum line length of 64 characters. If you PRINT a
line longer than this, the Computer simply' 'wraps around'' to the beginning of the
next line.

Printers have a maximum line length, too, but this length differs for various
models. The response to an overflow (longer than maximum-length) line also
varies. Some models wrap around to the next line automatically. Others may lose
the extra data, and may begin abnormal operation when the line is too long.

Another consideration is paper width. Suppose your paper is only wide enough to
hold 80 characters-but the printer will accept lines of up to 13 2 characters. In this
case, if you send a line longer than 80 characters, the printer will print part of the
information past the edge of the paper.

How to Set the Line Length

Memory address 16427 contains a value equal to the maximum line length less. two.
For example, to set the maximum line length to 64, execute the BASIC statement:

POKE 16427, 62

Since the Display is 64 characters per line (cpl), this setting will make line printer
output match Video Display output.

1/2

When address 16427 contains a value of 255, the maximum line length feature is
disabled. No matter how long the line is, the Computer will not insert carriage
returns in it. Remember, though, some printers automatically do this when the line
exceeds a specified length.

When you start BASIC, address 16427 contains a value of 255, so the maximum line
length function is disabled.

Page Controls

In many printer applications, you want to control the number of lines that are
printed on a page. For example, in printing forms or reports, when a given number
of lines have been printed, you want to advance the paper to the top of the next
page.

Model III BASIC has several features to help you do this. It keeps track of the
following information:

Data

Page size: number oflines per
page plus one. Initialized
to67 = 66 + 1.

Line count: number of lines
(carriage returns) already
printed plus one.
Initialized to one.

Memory Address

16424

16425

Most printers output six lines per inch; therefore standard 11" paper allows 66 lines,
which matches BASIC's initialization value.

To change the maximum lines/page setting, store the desired number of lines plus
one in 16424. For example, if your paper contains 88 lines per page, then execute this
BASIC statement:

POKE 16424, 89

When you start the Computer, position the paper to the top of the page (''top of
form''). That way BASIC's initial page information is correct. Each time BASIC
outputs a line (i.e., a carriage return), the line count is incremented.

Note: If your printer's maximum line-length is shorter than BASIC' s maximum line
length, the printer will insert carriage returns that BASIC isn't allowing for.
Therefore BASIC's line count will not be accurate.

7/3

TRS-80 MODEL Ill

To prevent this from happening, make sure BASIC' s maximum line length (stored in
address 16427) is no greater than that of your printer. You can find your printer's
maximum line length in the printer owner's manual.

To do an automatic top of form (advancing the paper to the top of the next page),
print the ASCII '' Form Feed'' code, decimal 12. For example, execute the BASIC

statement:

LPRINT CHR$(12)

The paper will advance by the following amount:

Top of Form= Max. lines/page-Lines already printed

Each time you print a form feed, CHR$(12), BASIC resets the line count
automatically.

Sometimes you may want to reset the line count, for example, after manually
advancing the paper to the top of form. To do this, store a one in 16425:

POKE 16425, 1

Checking the Printer Status

Unlike the Video Display, the printer is not always available. It may be
disconnected, off-line, out-of-paper, and so forth. In such cases, when you try
printer output, the Computer will wait until the printer becomes available. It will
appear to be' 'locked up''. To regain keyboard control (and cancel the printer
operation), press (BREAK).

Suppose you have a program which uses printer output. If a printer is not available,
you don't want the Computer to stop and wait for itto become available. Instead,
you may want to print a message like "PRINTER UNA v AILABLE" and stop.

To accomplish this, you need to check the printer status. The status is stored in
address 14312. AND this value with 240. The result should equal 48. lf it doesn't, that
means the Printer is unavailable for some reason, and printer output is not possible.
For example, your program could execute these statements:

100 ST%= PEEK(14312) AND 240
120 IF ST%<> 48 THEN PRINT "PRINTER UNAVAILABLE.": STOP
130 PRINT "PRINTER IS AVAILABLE"

7/4

Print Screen Function

Model III has a very handy feature to give you a' 'snapshot'' of whatever is on the
Display. It will work whenever the Computer is scanning the keyboard (BASIC' s
Immediate, Execute, Edit and System Modes). It does not work during cassette,
printer or serial 1/0.

When you want to copy the Display contents to the printer, simply press:

(SftI FT) (!) G

together. The Computer will stop what it's doing and print the screen.

The Computer will print the entire display, blanks and all. If you are only interested
in printing the top portion of the display, press (BREAK) when those lines have been
printed.

If a printer is not available, the Computer will wait until it becomes available or
until you press (BflEAK).

If the Display contains special characters or graphics characters, they will be
displayed as periods.

Note: You can also activate the Print-Screen function via the BASIC USR function.
See $PRSCRN in the Technical Information chapter.

7/5

8 / Using the RS-232-C Interface

What is an Interface?

It's a generalized means of communication between your TRS-80 and some external
device, providing the necessary conventions regarding data-identification,
transmission rates, send-receive sequences, error-checking techniques, etc.
However, an Interface does not provide the programming necessary to use any
particularTRS-80/ external device system.

For example, having the Interface installed does not automatically enable you to
send BASIC programs from one TRS-80 to another; to output to a line printer via the
Interface; etc. Such applications require '' driver programs'' which must be
custom-designed for the equipment you intend to use.

The Radio Shack RS-232-C Interface is designed to meet the EIA standards.
However, we cannot guarantee that it will work with all so-called '' RS-232-C
compatible'' devices. Nor do we commit ourselves to provide engineering and
programming support for such applications, or other special custom-use situations.

We do, however, guarantee that our Interface will function correctly with all our
own RS-232-C equipment.

The term RS-232-C refers to a specific EIA (Electronics Industries Association)
standard which defines a widely accepted method for interfacing data terminal
equipment with data communications equipment. The RS-232-C Interface is by far
the most universally used standard for interfacing data processing equipment. Most
video terminals, modems, card readers, line printers, mini-microcomputers, etc.,
utilize the RS-232-C standard for data interchange between devices.

Adding the RS-232-C to your Model III TRS-80 opens up a whole new world of
compatibility. The Computer can then be programmed to communicate with a
serial printer, telephone modem, serial display terminal~ almost any RS 232-C

device.

Note: The following information applies only if your Model III TRS-80 is equipped
with the RS-232-C Interface.

8/1

TRS-80 MODEL Ill

Using the Model III as a Terminal

Probably the most common use of the RS-232-C interface will be to allow the Model
III to act like a ''terminal'' to another ''host'' computer. In this application,
whatever you type on the keyboard is sent via RS-232-C to the other host computer,
and whatever the host computer sends to you is displayed on your screen.

Before going into the details ofRS-232-C operation, we'll show you a BASIC
program that sets up a simplified terminal operation.

1. Make sure the RS--232--C characteristics are set to match those of the host
computer. If they are not, then change them, as explained later in this chapter.

Note: For this BASIC Program, you must use a baud rate of 110. An equivalent
Z-80 program could use any baud rate.

2. Connect the Model III to the host computer via the RS-232-C. You will need a
telephone interface (modem) or other means of communication.

3. Type in and run the following BASIC program (you do not need to type in the
comments (material that starts with a single quote). The program displays
characters received via the RS-232-C, and sends characters you type in. It is for
demonstration only, and is not meant to function as a practical terminal. Notice
there are no spaces between the'' '' in line 160.

~3 DEF I NT A~- Z
10 Pm<E 1. 6B90, 0
15 POKE 16888,(2*16)+2
17 U1:::: 16526
18 U2 :.-:: 16527
20 Pm<E Ul, 90
:30 Pm'\E U2, 0
40 X =: USR(0)
50 RCV :::: 80
b0 TX -· 85
70 CI== 16872
80 CO::: 1.6BB0

'INTEGER VARIABLE FOR SPEED
'DON'T WAIT FOR SERIAL I/0
'TX/RCV AT BAUD RATE 110
'LSB OF USR CALL ADDRESS
'MSB OF USR CALL ADDRESS
'SET UP USR CALL, LSB

MSB
'CALL $RSINIT
'LSB OF SRSRCV
'LSB OF SRSTX
'CHARACTER INPUT BUFFER
'CHARACTER OUTPUT BUFFER

90' CHECK FOR SERIAL INPUT
1 00 PCH<E U 1 , R CV 'SET UP USR CALL TO SRSRCV

"CALL SRSRCV 110 X == USR(0)
120 CS= CHRSCPEEK(CI))
130 PRINT C$;
140' CHECK FOR KEYBOARD
150 C$ == I N~-(EY$
160 IF C$ =""THEN 100
165 PRINT cs;
166
170
180
190
200

8/2

Pm<E CO, ABC< CS)
PO.<E U1, TX
X == USR(0)
GOTO 100

'LOOK AT INPUT BUFFER
'IF C = 0, NOTHING HAPPENS

INPUT

'NO KEY, SO GO CHECK SERIAL
'DELETE THIS LINE IF HOST PROGRAM
'HAS AN ECHO FEATURE
'PUT CHAR. INTO OUTPUT BUFFER
'SET UP USR CALL TO SRSTX
'CALL $RSTX
'GO CHECK SERIAL INPUT

Programming the RS-232-C Interface

In this section, we will treat the RS-232-C just like any other input/output device, and
will explain how your BASIC program can use it. In Technical Information, we
explain how to use it in a machine-language ("Z-80") program.

For details about the RS-232-C signal conventions and theory of operation, see the
Appendix.

Selecting the RS-232-C Characteristics

Before using the RS-232-C interface to communicate with another device, you must
be sure your RS-232-C is set up to match the requirements of the other device.

So start by getting the following information about the other device. In the right
column, we list typical values used.

Characteristic

Baud Rate

Word Length (bits)

Parity

Stop Bits

Typical Values Used

110,150,300,600, 1200,
2400,4800,9600

5,6,7,8

Even, Odd, None

1, 2

When you start the Computer, the RS-232-C is initialized to the following '' default
characteristics' ':

Baud Rate

Word Length (bits)

Parity

Stop Bits

300

8

None

In addition, the RS-232-C is initialized to wait for completion of character 1/0 before
returning. That is, if you attempt to receive a character, the Computer will wait
until a character is received; it will never return to you without a character.
Similarly, if you attempt to send a character, the Computer will wait until the
receiving device is able to accept the character.

To regain control of the Computer during a wait, hold (BREAK) until READY returns.

8/3

TRS-80 MODEL Ill

I/O to the RS-232-C lnterf ace

If the default settings are correct, you are ready to begin serial 1/0. To change any of
the settings, you need to re-initialize the RS-232-C interface. See ''To Change the
RS-232-C Characteristics''.

There are two ROM subroutines for serial 1/0 (both were used in the simple terminal
program):

$RSTX
$RSRCV

Send a character
Receive a character

Both subroutines are simple to use from BASIC via the USR function.

To Send a Character

1. The Computer should be connected to the serial device.

2. Define a USR call to $RSTX (address 85) by executing these BASIC statements:

POKE 16526, 85
POKE 16527, 0

3. Send the character by storing the ASCII code in memory location 16880. Suppose
A$ contains the character. Then execute this statement:

POKE 16880, ASC(A$)

4. Make the USR call with a dummy argument:

X = USR(O)

If the Computer is using the Don't Wait procedure, then control will return to
BASIC even if the character was not sent. If the Computer is using the Wait
procedure, control will return to BASIC after the character is sent.

5. Repeat steps 3 and 4 until all the data has been sent.

To Receive a Character

1. The Computer should be connected to the serial device.

2. Define a USR call to $RSRCV (address 50) by executing these BASIC statements:

POKE 16526, 50
POKE 16527, 0

3. Get the character by making the USR call with a dummy argument. For example:

8/4

X = USR(O)

Upon return from the subroutine, USR returns the ASCII code of the character
received in memory location 16872. A zero indicates no value was received.

If the Computer is using the Don't Wait procedure, then control will return to BASIC

even if no character was received. If the Computer is using the Wait procedure,
control will return to BASIC after a character is received. Press (BREAK) to interrupt a
w AIT and regain keyboard control of the Computer.

4. To make this character available to BASIC, execute a BASIC statement like:

A$= CHR$(PEEK(16872))

which stores the string value in A$. Remember, if A$= CHR$(0), then no
character was received.

5. Repeat Steps 3 and 4 until you are through receiving data.

To Change the RS-232-C Characteristics

If the TRS-80' s default characteristics do not match the requirements of the other
device, you can change some or all of them by using (''calling' ') an initialization
subroutine that is stored in ROM.

Before calling $RSINIT, you must store the desired characteristics in certain RAM

locations:

Address

16888

16889

16890

Contents

Transmit/Receive Baud Rate Code

Parity/Word Length/Stop Bit Code

Wait/Don't-Wait Switch

Transmit/Receive Baud Rate Code

The TRS-80 RS-232-C allows you to receive and transmit at different rates. For most
applications, the rates will need to be the same.

Instead of storing the actual baud rate, you store a code for the value, taken from the
table below. You select the appropriate codes for send and receive rates, and then
''pack'' them into memory address 16888 as follows:

Send/Receive Code= (Send Code* 16) + Receive Code

For example, suppose we want to send and receive at 110 baud. Using the table on
the next page, we find that the code for 110 baud is 2. So:

Send/Receive Code= (2 * 16) + 2 = 34

8/5

TRS-80 MODEL Ill

In technical terms, we are storing the send-rate code in the most significant four bits
(''nibble'') of 16888, and the receive-code in the least significant nibble.

Baud-Rate Codes

Desired Error Baud Rate
Baud Rate (%) Code

50 0 0
75 0

110 0 2
134.5 0.016 3
150 0 4
300 0 5
600 0 6

1200 0 7
1800 0 8
2000 0.253 9
2400 0 10
3600 0 11
4800 0 12
7200 0 13
9600 0 14

19200 3.125 15

Parity/Word Length/Stop-Bit Code

You pack all of this information into one byte, using the following formula:

Code = (Parityselect* 128) + (Word* 32) +(Stop* 16) + (Parityonoff* 8)
+ (Transmit*4) + (DTR * 2) + RTS

where:

Parityselect = 0 for odd parity
= 1 for even parity

Word = 0 for 5-bit words
= 1 for 6-bit words
= 2 for 7-bit words
= 3 for 8-bit words

Stop = 0 for 1 stop-bit
= 1 for 2 stop-bit

Parityonoff = 0 to enable parity
= 1 to disable parity

8/6

Transmit = 0 to disable the transmitter
= 1 to enable the transmitter

DTR = 0 to set Data Terminal Ready signal low
= 1 to set Data Terminal Ready signal high

RTS = 0 to set Request to Send signal low
= l to set Request to Send signal high

For example, to select 7-bit words, even parity, two stop-bits, transmit-enable, DTR

high and RTS high, calculate the code this way:

Code = (1 * 12 8) + (2 * 3 2) + (1 * 16) + (0 * 8) + (1 * 4) + (1 * 2) + (1 * I) =
215

For additional information on how to determine the appropriate code
characteristics, read $RSINIT in the Technical Information Chapter and see
Appendix I.

Wait/Don't-Wait Switch

The TRS-80 lets you choose either Wait or Don't-Wait serial 1/0.

When you select Wait 1/0, the TRS-80 will not return from a serial 1/0 call until the
operation is successful (i.e., a character is transmitted or received). Pressing
(BREAK) will return control to your program.

When you select Don't-Wait 1/0, the TRS-80 will return from a serial 1/0 call even if
the operation was not successful (i.e., no character was transmitted or received).

The contents of memory location 16890 determines which procedure is used:

Contents of 16890

Zero

Non-Zero

Procedure Used

Don't-Wait

Wait

8/7

TRS-80 MODEL Ill

Calling $RSINIT from BASIC

Store (POKE) the desired values into the RS-232-C control addresses (16888-16890). If
any of the default characteristics are already correct, leave those addresses
unchanged.

If you need to change the parity/word length/stop-bit code, see $RSINIT in the
Technical Information chapter. Once you have calculated the desired codes for
baud rate, parity/word length/stop-bits and Wait/Don't-Wait, you are ready to call
$RSINIT.

Execute the following BASIC statements to define a USR call to $RSINIT:

POKE 16526, 90
POKE 16527, 0
X = USR(O)

When the last statement has been executed, the RS-232-C is initialized.

8/8

9 I Routing Input/Output

Model III lets you route 1/0 from one device to another. This gives your programs
more versatility.

For example, suppose you have a program that outputs to the Video Display. Now
suppose you want all display output to go to the printer. You can accomplish this
without changing the program at all, using the route capability. The source device
(in our example, the display) will then be logically equivalent to the destination
device (printer) until you re-initialize the l/0 drivers with $INITIO (described later).

Here are the devices that may be routed:

Device System Abbreviation

Keyboard KI

Display DO

Printer PR

RS-232-C
Send RO
Receive RI

9/1

TRS-80 MODEL Ill

To Route from One Device to

Another

Note: To actually try out the next four steps, you must have printer connected to
your Computer. If not, just read through the example.

1. Store the Source Device Abbreviation in memory locations 16930-16931. For
example, to store DO (display) as the source device, execute the BASIC

statements:

POKE 16930, ASC("D")
POKE 16931 , ASC("O")

2. Store the Destination Device Abbreviation in memory locations 16928-16929. For
example, to store PR (printer) as the destination device, execute the BASIC

statements:

POKE 16928, ASC("P")
POKE 16929, ASC("R")

3. Set up a USR call to $ROUTE (address 108). For example, execute the BASIC

statements;

POKE 16526, 108
POKE 16527, 0

4. Make a USR call to $ROUTE with a dummy argument. For example, execute the
BASIC statements:

9/2

X = USR(0)

Upon completion of Step 4, the route is completed. Now everything you send to
the display will be sent to the printer instead.

Routing Multiple Devices

You can change two or more of the 1/0 routes. To do this, you perform the routing
Steps 1 through 4 once for each change you wish to make. However, to get the
desired result, you must do the changes in the correct order! If you use one device
as the source of a route, you should not later on use the same device as a
destination. Here's why:

After you route device A to device B, device A is now logically equivalent to device
B. Therefore:

(1) Route A to B

(2) Route c to A

Does not allow c to output to device A. Output to c will actually transfer to B, just as
if you had executed these steps:

(1) Route A to B

(2) Route c to B

On the other hand:

(1) Route c to A

(2) Route A to B

Does allow device c to output to device A and device A to output to device B.

For example, suppose you want to route display output to the printer, and printer
output to the RS-232-C. Here's a diagram of what you want to accomplish:

Display
Output

Printer __________,..
/Output

RS-232-C /
Output

Display output goes to the Printer, and Printer output goes to the RS-232-C. All other
1/0 routes are unchanged. Note that Display output does not get carried forward
from the Printer to the RS-232-C. To accomplish the routing pictured above, use this
sequence:

1. Route DO to PR

2. Route PR to RO

If you mistakenly do the steps in reverse order, you will get this result:

Display Printer
/ /Output

RS-232-C /

------Output

Output

In this case, Display output is' 'carried forward'' from the printer to the RS-232-C. It
does not output to the printer.

9/3

10 / Real-Time Clock

The Model III contains a real-time clock. It is always running, except during
cassette and disk I/0 and during certain other operations.

The clock keeps the following information in memory:

Abbrev. Range of Values Memory Location

MO Month 01 - 12 16924

DA Day 01 - 31 16923

YR Year 00 - 99 16922

HR Hour 00 - 23 16921

MN Min. 00 - 59 16920
ss Sec. 00 - 59 16919

The clock includes the logic for 28, 30 and 31-day months. It does not recognize leap
years.

When you start the Computer, the clock is set to all zeroes:

00/00/00 00 :00 :00

To Set the Clock

Simply store the appropriate data in the memory addresses given above. You may
do this by running the following program:

10 DEFINT A z
20 DIM TM(5)
:30 CL ::::: 1692Lt
40 PRINT "INPUT 6 VALUES: MO, DA, YR, HR, MN, SS"
'.50 INPUT TM (0) , TM (1) , TM C~~) , TM C3) , TM (4) , TM C5)

60 FOR I= 0 TO 5
70 POKE CL - I, TM(I)
80 NEXT I
90 PRINT "CLOCK IS SET"
1(10 END

10/1

TRS-80 MODEL Ill

To Read the Clock

The Model III includes a built-in BASIC function, TIME$, to get the time in a 17-byte
string. For example, execute the BASIC statement:

PRINT TIME$

To display the time.

To Display the Clock in Real-Time

You can turn on a continuously updated clock display. The current time (not the
date) will be displayed in columns 57-64, regardless of what mode the BASIC is in:
Immediate, Execute, Edit, or System. As long as the clock is running, it will be
updated on the display.

To enable the clock display, call the ROM subroutine $CLKON at address 664. To
disable it, call the ROM subroutine $CLKOFF at 673.

The following BASIC program shows how to turn the display on and off. Each time
you want to switch it on or off, run the program.

Note: To calculate the most significant and least significant bytes of a decimal
number, use this formula:

MSB = integer portion of (number/256)
LSB = number-(MSB * 256)

For example, decimal address 661 can be broken down this way:

MSB = integerportiono/(661/256) = 2
LSB = 661 -(2 * 256) = 152

10/2

Sample Program

5 Cl 8
10 DEFINT A-... z
20 EN= 152: DI= 161 'LSB OF SCLKON/SCLKOFF
30 PRINT "<E> NABLE CLOCK DISPLAY"
40 PRINT "<D> ISABLE CLOCK DISPLAY"
:50 INPUT /.\~f;

60 IF AS= "E" THEN SW - EN: GOTO 100
70 IF A$= "D" THEN SW - DI: GOTO 100
Bil.I GOTO :m
100 POKE 16526, SW
110 POKE 16527, 2
1 20 X ::: US FH 0)
1:30 END

., SET UP USR CAL..l ...
'MSB IS SAME FOR BOTH CALLS
'CALL USR SUBROUTINE

For further information about the real-time clock, see $CLKON and $CLKOFF in the
Technical Information chapter.

10/3

11 / Input/Output Initialization
Whenever you start or reset the Computer, the input/ output routines (' '1/0 drivers'')
are initialized to their default values (as explained in the following chapters). For
example, the Video Display is initialized to have a blinking cursor.

As described in the previous chapters, there are ways for you to alter these default
characteristics via a BASIC or Z-80 program. Because of this feature, it is important
to have a means of resetting the 1/0 drivers to their default conditions.

Model III has a ROM subroutine to re-initialize all 110 drivers to their default values.
We call it $INITIO.

The following BASIC program shows how to use $INITIO.

10 POKE 16526, 105
20 PO~\E l 6'.527, 0
:m x ::: uE:rn < 0 >

'LSB OF SINITIO ENTRY ADDRESS
'MBB
'CALL. ~;INITIO

Run this program whenever you want to restore the 1/0 drivers to their initial
characteristics.

11/1

12/Technical Information

This section is intended for Z-80 programmers and BASIC programmers who are
familiar with binary and hexadecimal arithmetic and hardware concepts like bit and
byte. Its purpose is to allow you to take full advantage of the Model III TRS-80.

If you want to understand and use the system on this level, but do not have the
background, we suggest you read:

TRS-BOAssembly Language Programming
by William Barden, Jr.
Radio Shack Catalog Number 62-2006

This one book will get you off to a good start. It was written for the Model I TRS-80,

but almost all of it applies to the Model III as well.

To Protect High RAM

In many applications, you will want to interface a BASIC program and a Z-80

routine. In such cases, you need to protect enough high RAM to accommodate your
Z-80 routine. Otherwise, BASIC will use all RAM available for storage and execution
of the BASIC program.

During the start-up dialog, you have the option of protecting high RAM via the
Memory Size Question. If you simply press (ENTER) to this question, BASIC will use
all available RAM.

To protect RAM, type in the' 'limit address'' in decimal form, and then press
(ENTER). The limit address is the highest memory address you want BASIC to use.
Addresses above this value will not be affected by BASIC.

For example, if you type: 11
32667 (ENTER)", BASIC will not use any memory above

32667. It will use 32667 and all lower-numbered memory locations.

12/1

TRS-80 MODEL Ill

ROM Subroutines

The Model III BASIC ROM contains many subroutines that can be called by a Z-80

program; many of these can be called by a BASIC program via the USR function.
Each subroutine will be described in the format given below.

1. $NAME-Entry address

2.)function Summary

3. Description of function

4. Entry Conditions

5. Exit Conditions

6. Sample Program

Notes:

1. The subroutine name is only for convenient reference. It is not recognized by the
Computer. The$- prefix reminds you that it is a convenience name only.

The entry address is given in decimal/hexadecimal form. (The hexadecimal address
will be given in this form: X' 0000'.) This is the address you use in a Z-80 CALL. BASIC

programmers store this address in the USR definition address (16526-16527).

4, 5. Entry and exit conditions are given for Z-80 programs. If a Z-80 register is not
mentioned here, then you can assume it is unchanged by the subroutine.

6. Sample Program fragments are given in Z-80 Assembly Language and, where
appropriate, in BASIC.

Here are the subroutines, arranged according to function. In the following pages,
they are arranged alphabetically.

12/2

System Control

$CLKON

$CLKOFF

$DATE

$DELAY

$INITIO

$READY

$RESET

$ROUTE

$SETCAS

$TIME

Cassette 1/0

$CSHIN
$CSIN
$CSOFF

$CSHWR
$CSOUT

Keyboard Input

$KBCHAR
$KBWAIT
$KBLINE
$KBBRK

Printer Output

$PRCHAR
$PRSCN

RS-232-C 1/0

$RSINIT
$RSRCV
$RSTX

Clock-display on
Clock-display off
Get today's date
Delay for a specified interval
Initialize all I/0 drivers
Jump to Model III' 'Ready''
Reset Computer
Change I/0 device routing
Prompt user to set cassette baud rate
Get the time

Cassette on, search for leader and sync byte
Input a byte
Tum off cassette drive
Cassette on, Write leader and sync byte
Write a byte to cassette

Get a character if available
Wait for a character
Wait for a line
Check for (BREAK) key only

Print a character
Print entire screen contents

Initialization
Receive a character
Send a character

Video Display Output

$VDCHAR

$VDCLS

$VDLINE

Display a character
Clear the screen
Display a line

12/3

[1(2Wl0
0tiL:'.B
t'.1033
IZJ0JB
t'.J0lf(2)
(2)(2) 119
(!10:'dZt
00'':)'j
L-10::,A
0060
t7.1069
li.l06C
i!.ll C:9
(2) 1 J)C/

01H3
1;121B
(?t2J::,
0264
,~:?Er/
02BD
((1296
0::::'.9El
t'l,,~Al
:~t;1Lf2

1/.\19
Jfl..133
.3036
3/EB

TRS-80 MODEL Ill

(?)C%')01
('1(2)002
rn,m0,1
t%10CV1
(i.)(i.)ft.)(2)~)

MODEL JI J ROM Ci\LLS ··· DEMONSTRATION PROGF~AM

C Fff ti I E D 0 //(ti I/ flk1

UPDA ITD 0 / 1i1u/m1
c1Jm:106
C·1f..1007
000ti:JH
(/l@i.)09

TO DE~rnNSlRATE, JUMP TO lHE APPROPRIAlE ENTHY
PUINI,, fJ\CH DFMU ENDS t.JITH A ,JUMP IU 13AEJJC ''F<H\DY·'

vJ0(i.ll0
0001 l HE m: r L (;11_.)

(i.10012 1-\BCll/.\R E<i!U
f..100 l 3 1.lD CHAR f: <;iU
000 I . .t.1 PRCHi,I~ E(;-!U
00015 Km_INE E0U
00016 KBWAII EQU
00017 RSHCV EQU
00010 m:n >: E!}U
0001 9 Hf:1 IN J I E (ilU

00020 DEL./W EC;itJ
00021 INI"r IO EG!U
00022 ROUTE EQU
00023 VDCLS EQU
00024 PRBCN EQU
00025 CSOFF EQU
00026 VDI... I NE EGHJ
00027 CSIN EQU
00028 CSOUT EQU
C100~?9 CSHt,JH E G1U
00030 KBBRK E0U
00031 CSHIN E@U
00032 CLKON E0U
00033 CLKOFF EQU
00034 SE1CAS E0U
00035 READY EQU
00036 DATE "EQU
00037 TIME EQU
00038 PRSTAl EQU

00039
000'+0
000Lf l

0t1fl.li;,1H
L102P,I I
C7JC13/,H
ii.llll,3Bl·I
(21(2)L1 (i'.IH
00L1 1/l·I
C:Wl'.:..0H
ii.HZJ"'i'il 1
00~:,MI
(.1C16ti:lH
00691·1
vJC16Cl ·I
C.11 C9H
12.111)'?11
~(J1 Frn·I
02:LBH
,1.2J~,H
(d261+11
0'.?ff?H
L•l":2f3Dll
0296H
0~~9BH
0~:'A1 H
;:,1011.)H
1A19H
::m:.DH
:30.3611
37EElH

El000H

Note: This Z-80 assembly language listing is continued under the ROM call entries
for Sample Z-80 Programming.

12/4

$CLKOFF - 673/X' 02Al'

Disable the Clock Display

Entry Conditions

None

Exit Conditions

A is altered. All other registers are unchanged.

Sample Z-80 Programming

00042 ruRN OFF CLUCK
El000
l3(Z)(Z)J

CD/.\ l ~12
CJl9tA

00fZ)11,3 CALL CU<OF F
00044 JP READY

Sample BASIC Programming
100 POKE 16526,161: POKE 16527,2
110 X = USR((Z)i

$CLKON-664/X'0298'

Enable the Clock Display

Entry Conditions

None

Exit Conditions

'LSB/MSB
'DUMMY ARGUMENT

A is altered. All other registers are unchanged.

Sample Z-80 Programming

13006
BC.~09

CD9B02
C31.91A

00045
00046
00047

TURN ON CLOC•<
CALL. CLKON
JP READY

Sample BASIC Programming

100 POKE 16526,152: PC~E 16527,2
110 X = USfH0i

'L..SB/MSB
'DUMMY AF<GUMENr

12/5

TRS-80 MODEL Ill

$CSHIN-662/X'0296'

Search for Cassette Header and Sync Byte

Each cassette' 'record'' begins with a header consisting of a leader sequence and
synchronization byte. $CSHIN turns on the cassette drive and begins searching for
this header information. The subroutine returns to the calling program after the
sync-byte has been read.

Entry Conditions

None

Exit Conditions

A is altered. All other registers are unchanged.

Sample Z-80 Programming

The following program reads the tape created by the $CSHWR sample program.

(2)(2)(2)L•8 ; READ
f:300C CDC901 0001+9
800F :3E0D 00(2)5(2)
B011 CD3300 (l.)v.)(Z)~j 1
812)1 L1- CDL•230 (2)(2)(2):.i:;:
8017 213B80 000::i:.3
801A CD1B02 (2)0(2)5Lf
B01D CD4900 00055
8020 :;;;:16280 000~)6
8023 CD9612l2 00057
B026 CD3502 00058 LOOP
B029 Tl 00059
B02A 23 0006(2)
f:302B FE0D 00061
B02D 20F7 (2)(2)(2)6:;;::
f:302F CDFf:301 00063
EW'.132 2162B0 000tA
B035 CD1B02 00065
B038 C3191A 00066
f:30:.3B 50 00067 M\3<=.i0
t3061 0D 00068
B06:2 00069 TXT

12/6

A MESSAGE FROM lAPE & STOP ON CAR-REl'N
CALL VDCL!:3 CL.FAR !3CF<EEN
LD A,0DH
CALL VDCHAF<
CALL SETCAS
LD HL,MSG0
CALL VDL INE
CALL l··,BW/\ IT
LD HL., TXT
CALL CSHIN
CALL. CtdN
L.D (HU, A
INC HL
CP 0DH

NZ,LOOP
CSOFF
HL, ·r Xl
VDL..INE

Sh IP ,n. LI NI:
LET USER SELECl BAUD RATE
(Hll=CASSEffE PROMPI

WAir FOR l\NY f\[Y
(HL) <::'.::,6-·EWTE P,UFFE R
Fil'm STAF<T OF HECORD
INPUT A BYTE
STOHE IT
POINT 10 NXT LOC.
W/-\S LAS r BYTE:::::C/\R··REl' N?
IF NO, GEl NXT BYlE
IF YES, TURN OFF CASSETTE
DISPLAY THE MESSAGE

1..TR
CALL
LD
CALL
JP
DEFM
DEFB
DEFS

READY AND @Uil
'PREPARE rAPE TO PLAY AND PHESS ANY KEY'
0DH
256 STOHAGE FOR rAPED MESSAGEE

$CSIN-565/X'0235'
Input a Byte

After completion of $CSHIN, use $CSIN to begin inputting data, one byte at a time.

Note: You must call $CSIN often enough to keep up with the baud rate (either 500 or
1500baud).

Entry Conditions

None

Exit Conditions

A= Data byte

Sample Z-80 Programming

See$CSHIN.

$CSHWR - 647 /X '0287'

Write Leader and Sync Byte
Each cassette' 'record'' begins with a header consisting of a leader sequence and a
synchronization byte. $CSHWR turns on the cassette and writes out this header.

Entry Conditions

None

Exit Conditions

A is altered.

12/7

TRS-80 MODEL Ill

Sample Z-80 Programming
(Zl(2)(Zl7(ZI ; INPUT A f,EYBOARD MESE~A(,E AND WRITE n TO CA~3SETTE

8162 CDC901 00071 U\LJ VDCLS
816:::, JEIZlD 12)Q)(Zl72 LOOP1 L.D A,0DH CARRIAGE RETURN
8167 co;3300 (2)(2)073 CALL VDCHAR ShIP TO NEXT DISPLAY L!INE
E:16A 21A0El1 (2)Q.l(Z)7Lf L.D HL,MSG1 PROMPT MESSSA(,E
B16D CD:LB(ZJ:;~ (ZJ(ZJ(2)75 CAU. VDL. INE: DISPLAY IT
H170 21EA81 (Zl(Zl(2)76 LD HL..,TXT1 256-BYTE BUFFER
Bl 73 06FF (2)(2)12)77 LD B,25:'.i MAX OF :2515 CHARACTEH!J
t) 175 CI)l.f(2)(2)(ZI (ll(2)(2)78 CAL..L f\BL I NE <:iET A LINE FROM f\B
B178 3BEl3 (2)0079 JR C,I...OOP1 LOOP IF <BRENC· WAS PRESSED
B17A 3E0D (2)(2)(2)80 L.D A,0DH
817C CDT300 012l0B1 CALL VDCHAR ShIP A LINE
f:l.7F CI)L1-2JQ'.I (Z)Q'.1(2)82 CALL SE'I CAS LET USER SELE.Cl BAUD RAlE
8:Lf.3::::: 21B381 001i.H33 L..D HL, MSG:2 CASSETTE PROMPT
8185 CD1Bl2l2 (2)(2)0ElLt CALL VDLINE
8188 CD4900 00085 CALL hBWAil WAIT UNTIL A f'(EY IS PRESSED
BlBB CDB702 012l0El6 CALL CSHWR WRITE CASSETTE HEADER
818E 21EAB1 00087 I....D HL,TXT1 <HL.)===MEBSAGE.
B191 7E (2)(ZH2lBB LOOP2 L.D A, (HL) A==ASCI I BYTE
f:3192 2J 00089 INC HL. POINT TO NEXT BYTE
B 19:~ CD6Lf(2)2 00090 CALL CSOUT WRITE L..AS'T BYTE TO TAPE
81 176 FE0D 00091 CP 0DH WAS IT A CARRIAGE RETURN?
8198 20F7 00092 ,JR NZ,LOOP2 IF NO, THEN GET NEXT BYTE
819A CDF812l1 00093 CAL.L CSOFF IF YES, TURN OFF CASSErTE
Ei19D C3191A 00094 JP READY
81A0 5'+ 00095 MSGl DEFM 'TYPE IN A MESSSAGE'
E31B2 0D 00096 DE.FB 0DH
81B3 4D (2)(2)097 MS(~2 DEFM 'MESSSAGE STORED. PRESS ANY f\EY WHEN READY TO
El1E9 0D (2)1ZJIZJ98 DEFB IZJDH END OF LINE
8:LEA 00099 TXT1 DEFS 256

For a program to read the tape in, see $CSHIN.

$CSOFF - 504/X '01F8'

Turn Off Cassette

After writing data to cassette, call this subroutine to turn off the cassette drive.

Entry Conditions

None

Exit Conditions

None

Sample Z-80 Programming

See$CSHWR.

12/8

RECORD ••• ,

$CSOUT-612/X'0264'
Output a Byte to Cassette

After writing the header with $CSHWR, use $CSOUT to write the data, one byte at a
time.

Note: You must call $CSOUT often enough to keep up with the baud rate (either 500

or 1500 baud).

Entry Conditions

A = Data byte.

Exit Conditions

None

Sample Z-80 Programming

See$CSHWR.

$DATE-12339/X'3033'
Get Today's Date

Entry Conditions

(HL) = Eight-byte output buffer

Exit Conditions

(HL) =Date in this format:
MO/DA/YR

All other registers are altered.

Sample Z-80 Programming
00100

82EA 210883 (2)(2) 101
R2ED CD3330 00102
82F0 21FF82 00103
82F3 CD3630 00104

GET TODAY'S
LD
CALL..
LD
CALL

DATE & TIME
HL.,TXT2 8·-BYTE
DATE
HL,TXT3 8-BYTE
TIME

BUFFER

BUFFER

82F6 21FF82 00105 LD HL,TXT3 (HU =TIME/DATE MSG.
B2F9 CD1802 00106 CALL VDLINE DISPLAY TIME/DATE
82FC C3191A 00107 JP READY
82FF 00108 TXT3 DEFS 8 TIME GOES HERE
8307 20 00109 DEFB 20H ASCII SPACE
8308 00110 TXT2 DEFS 8 DATE GOES HERE
831(2) 0D 00111 DEFB 0DH END OF LINE

12/9

TRS-80 MODEL Ill

$DELAY-96/X'0060'

Delay for a Specified Interval

This is a general-purpose routine to be used whenever you want to pause before
continuing with a program.

Entry Conditions

BC = Delay multiplier. Actual delay will be:
2.46 + (14.8 * BC) microseconds

When BC 0000, 65536 is used. This is the
maximum delay (about one second).

Exit Conditions

BC and A are altered.

Sample Z-80 Programming

~'101Vi' ;t:;How ALL DISPLAY CHARACTERS,
3E::,!(7.)
D311
8:.3 l'+
EU17
F~Jl 9
BJ1C
831F
t:320
f3321
E::324
B,.3~~:5
B326
E3327
El329

00113 CENTER EQU JE20H
0011.Lf
001 l''i
001.16
00117

CALL I NI TIO
CM.I VDCLS
L D A, 0H
LD BC,7FFFH

CD6900
CDCC/C'.11
3E0(1
01FF7F
32203E
F'.':i

00118 LOOPJ LD (CENlER>,A

(5

CD6000
Cl
F 1
3C
20F3
C3191A

00119
00120
0012:l
001 ::::~:
00123
001::;::4
0012"i
00126

$INITIO-105/X'0069'

Initialize All 1/0 Drivers

PUSH AF=
PUSH
CAt.L
POP
POP
INC
JR
,JP

BC
DELAY
BC
Al:~
A
NZ,LOOP3
READY

l,,JilH DELAY Af I Ef~ Ef\CH
ROt,J O, COi. JJMN 32 C>F VI DE 0
RESTORE ALL 1/0 DRIVERS
FIRST CLEAR SCREEN

SET 1/2 ·SEC DELAY F/-\CTUI<
WRITE CHARACTER TO VIDEO
SAVE LAST CHAR. CODE
AND DELAY FACTOR

NEXT CHAR CODE
IF NOT ZERO, DISPLAY IT
ELSE END

Call $INITIO to restore all I/0 drivers to their initial default conditions, including I/0

routes.

Entry Conditions

None

Exit Conditions

All registers are altered.

12/10

Sample Z-80 Programming

See$DELAY.

Sample BASIC Programming

10 Pru<E 16526,105: POKE 16527,0
:?0 X = USR ((2))

$KBCHAR- 43/X '002B'

., L.SB/MSB

., DUMMY A HGUME:I\I T

Get a Keyboard Character if Available

This subroutine checks the keyboard for a character. The character (if any) is not
displayed.

Entry Conditions

None

Exit Conditions

A=ASCII Character. IF A=O, no character was available.

DE is altered.

Sample Z-80 Programming

See $RS IN IT.

12/11

TRS-80 MODEL Ill

$KBLINE-64/X'0040'

Wait for a Line from the Keyboard

This routine gets a full line from the Keyboard. The line is terminated by a carriage
return (X'OD') or (BREAK) (X'Ol '). Characters typed are echoed to the display.

Entry Conditions

B = Maximum length of line. When this many characters are typed,
no more will be allowed except for (ENTER) or (BREAK)

(HL) = Storage buffer. Length should be B + 1 .

Exit Conditions

c Status = (BREAK) was the terminator.

B Number of characters entered.

(HL) = Line from keyboard, followed by terminating character.

DE is altered.

Sample Z-80 Programming

See$CSHWR.

$KBWAIT-73/X'0049'
Wait for a Keyboard Character

This routine scans the keyboard until a key is pressed. If(BREAK) is pressed, it will
be returned in A like any other key. The character typed is not echoed to the
Display.

Entry Conditions

None

12/12

Exit Conditions

A = Keyboard character

DE is altered.

Sample Z-80 Programming

See$CSHWR.

$KBBRK- 653/X' 028D'

Check for (BREAK) Key Only

This is a fast key scan for the (BREAK) key only. Use it when you want to minimize
keyboard scan time without totally locking out the keyboard.

Entry Conditions

None

Exit Conditions

NZ Status = (BREAK) was pressed

A is altered.

12/13

TRS-80 MODEL Ill

$PR CHAR- 59/X '003B'

Output a Character to the Printer

$PRCHAR waits until the Printer is available or until (BREAK) is pressed. If (BREAK) is
pressed, $PR CHAR returns to caller.

Entry Conditions

A ASCII character

Exit Conditions

DE is altered.

Sample Z-80 Programming

8356
83~:.9
83~:iA
835B
835E
836(2)
f.3362
8365
8382
Lt02D

216583
7E
23
CD3800
FE0D
20F7
C3191A
54
0D

00000 ASSEMBLY ERRORS

00148; PRINTER DEMO
00149 LD
00150 LOOPS LD
00151 INC
00152 CALL
00153 CP
00154 JR
00155 JP
00156 TXT4 DEFM
00157 DEFB
00158 END

$PRSCN-473/X'01D9'

Print Entire Screen Contents

HL,TXT4
A, (I-IL)

HL.
PRCHAR
0DH
NZ,LOOP5
READY

(HL)==SAMPLE TEXT
GET CHAR. INTO A
POINT TO NEXT CHAR
PRINT CHAR IN A
WAS IT A CARRIAGE RETURN?
IF NO, GET NEXT CHAR.
IF YES, 0.UIT

'THIS
0DH

SENTENCE WILL BE PRINTED'

This routine copies all I 024 characters from the screen to the printer. If the printer is
unavailable, it waits until the printer becomes available. If(BREAK) is pressed,
$PRSCN returns to the caller.

Entry Conditions

None

Exit Conditions

All registers are altered.

12/14

$READY -6681/X'1Al9'

Jump to Model III BASIC ''Ready''

To exit from a machine-language program into BASIC's immediate mode,jump to
$READY (don't call it).

Entry Conditions

None

Exit Conditions

None

Sample Z-80 Programming

See $CSHIN.

$RESET-0/X'0000'

Jump to RESET

Jump to this address to re-initialize the entire system starting at the ''Cass?''
prompt. If a disk controller is present, the Computer will attempt to load TRSDOS.
To prevent this from happening, the operator must hold down (BREAK) before this
jump is executed.

Entry Conditions

None

Exit Conditions

None

12/15

TRS-80 MODEL Ill

$ROUTE-108/X'006C'
Change 1/0 Device Routing

Entry Conditions

(X'4222') = Two-byte source device ASCII abbreviation: {KI,DO,RI,RO,PR}

(X'4220') = Two-byte destination device ASCII abbreviation. Same set as above.

Exit Conditions

DE is altered.

Sample Programming.

See Chapter 9 in this section.

12/16

$RSINIT-90/X'005A'
Initialize the RS-232-C Interface

When you start the Computer, the RS-232-C interface is initialized to the
following characteristics:

Send/Receive Baud Rate: 300
Word length: 8
Parity: None
Stop-Bits: One
Wait for completion of character 1/0

To change any of these, you must call $RSINIT.

Entry Conditions

(16888) = Send/Receive Baud Rate Code:
Most significant four bits = send rate
Least significant four bits= receive rate
See the table of baud rate codes in Chapter 8.

(16890) = Wait/Don't Wait Switch
Zero= "Don't Wait"
Non-Zero= "Wait"

(16889) = RS-232-C Characteristics Switch:

Bits

7

6,5

5

4

Meaning

Parity:
1 = Even
0=Odd

Word Length:
00 = 5 Bits
01 = 6Bits
10 = 7 Bits
11 = 8 Bits

Stop Bits:
0 = 1 Bit
1 = 2 Bits

Parity On/Off
0 = Parity
1 = No Parity

Bits

3

2

1

Meaning

Transmit On/Off
0 = Disable
1 = Enable

Data Terminal Ready
0=No
l = Yes

Request To Send
0=No
1 = Yes

12/17

TRS-80 MODEL Ill

Exit Conditions

DE is altered.

Sample Z-80 Program

00127
00128
00129

TERMINAL PROGRAM FOR DEMO OF RS-232-C CALLS, SKBCHAR AND SVDCHAR

ASSUME 16888 & 16889 CONTAIN THE PROPER INITIALIZATION VALUES
00130

B32C AF 00131 XOR A
832D 32FA41 (2HZH32 LD (16890), A
B330 CD5A00 00133 CALL RSI NIT
83:..3.3 CDC901 0013'+ CALL VDCLS
B336 CD2B00 00135 f{EYIN CALL f-::BCHAR
8,3:.3r::; FE00 00136 CP (2)

833B 2806 (2)(2'.1137 JR Z,RSIN
833D CD3:3(2)0 00138 CALL VDCHAR
B3L•0 CD5500 00139 CALL RSTX
8343 21E841 00140 RSIN LD HL,16872
f.!346 CD5000 (2)(2)141 CALL RSRCV
83'+9 7E 00142 LD A, (HU
El34A FE00 00U.3 CP 0
834C 28E8 (2)(2)144 ,JR Z,KEYIN
83L•E CD3300 (2)(2)145 CALL VDCHAR
8351 18E3 00146 JR •{EVIN
8J53 C3191A 00147 JP READY

$RSRCV-80/X'0050'

Receive a Character from the RS-232-C Inter(ace

ZERO A TO SELECT "DON'T WAIT"

CHECK f-::EYBOARD

IF NOTHING, CHECK RS232
SELF·-ECHO
SEND IT TO RS232
(HL)=CHAR.INPUT BUFFER
CHECK FOR RS232 INPUT
GET BUFFER CONTENTS

IF NOTHING, CHECK KB
ELSE DISPLAY IT
CHECK •{B
RETURN TO BASIC

IfRS-232-C Wait is enabled, this routine waits for a character to be received, or until
(BREAK) is pressed.

If Wait is not enabled, it returns whether or not a character is received.

Entry Conditions

None

Exit Conditions

(16872) = Character received. Zero indicates no character.

DE is altered.

Sample Z-80 Programming

See $RSINIT.

12/18

$RSTX - 85/X' 0055'

Transmit a Character to the RS-232-C Interface

If RS-232-C Wait is enabled, this routine waits until the character is transmitted or
until (BREAK) is pressed.

If Wait is not enabled, it returns whether or not a character is transmitted.

Entry Conditions

A = Character

Exit Conditions

z Status = No character sent

DE is altered.

Sample Z-80 Programming
See $RS IN IT.

$SETCAS-12354/X'3042'

Prompt User to Set Cassette Baud Rate

This call repeats the first question in the Model III start-up dialog. It displays the
prompt:

Cass?

on the next line of the display, and waits for the operator to type "H" (high-1500
baud) or "L" (low-500) or (ENTER) (default to high).

Upon return from the call, the cassette rate is set according! y.

Entry Conditions

None

Exit Conditions

All registers are altered.

Sample Z-80 Programming

See$CSHWR.

12/19

TRS-80 MODEL Ill

$TIME-12342/X '3036'
Get the Time

Entry Conditions

(HL) = Eight-byte output buffer

Exit Conditions

(HL) = Time in this format:
HR:MN:SS

All other registers are altered.

Sample Z-80 Programming

See$DATE.

$VDCHAR- 51/X '0033'
Display a Character

This subroutine displays a character at the current cursor location.

Entry Conditions

A = ASCII character

Exit Conditions

DE is altered.

Sample Z-80 Programming

See$DELAY.

12/20

$VDCLS-457 /X'01C9'
Clear the Video Display Screen

Entry Conditions

None

Exit Conditions

All registers are altered.

Sample Z-80 Program
See$CSHWR.

$VDLINE-539/X'021B'
Display a Line

This subroutine displays a line. The line must be terminated with an ASCII ETX

(X'03') or carriage return (X'OD'). If the terminator is a carriage return, it wil1 be
printed; if it is an ETX, it will not be printed. This allows VDLINE to position the
cursor to the beginning of the next line or leave it at the position after the last text
character.

Entry Conditions

(HL) = Output text, terminated by X'03' or X'OD'.

Exit Conditions

(HL) = First character after the terminator.

DE is altered.

Sample Z-80 Programming
See$CSHWR.

12/21

TRS-80 MODEL Ill

(BREAK) Processing

The (BREAK) key is intercepted during keyboard scan operations. The Computer
transfers control to a three-byte jump vector in RAM (hex values: C3 lsb msb). For
special applications, you may change the jump vector addresses to allow your own
program to handle the (BREAK) key.

Thekeyscan CBREAK)jump vector is located at 16396 (X'400C').

Register contents on entry to the jump vector

DE = Modified by the Computer

(SP)= The return address of the interrupted program. That is, a RET will transfer
control to the point at which the program was interrupted.

Sample BASIC Programming

Run this BASIC program to disable (filtEAK).

10 POKE 16396,175
20 POKE 16397,201

'175 Z-80 "XOR A" CODE
'201 = Z-80 "RET" CODE

Run this BASIC program to enable the (BREAK) key.

10 POKE 16396,201 'Z-80 "RET" CODE

12/22

Memory Map

Decimal Contents Hexadecimal
Address Address

0 12 KROM 0
Model Ill BASIC

12288 2 KROM 3000
for System Use

14336 Keyboard 3800
Matrix

15360 Memory-Mapped 3C00
Video Display:

Upper left corner =
15360 + 0.

Lower right corner =
15360 + 1023.

16384 Reserved 4000
for System Use

17129 User Memory 42E9
For Program and Data

32767 "16K RAM" ends here. 7FFF
49151 "32K RAM" ends here. BFFF
65535 "48K RAM" ends here. FFFF

12/23

TRS-80 MODEL Ill

Summary of Important ROM Addresses

Address
Dec Hex Contents Function
0 0000 $RESET System reset

43 002B $KBCHAR Check for keyboard character

51 0033 $VDCHAR Display a character

59 003B $PACHAR Print a character

64 0040 $KBLINE Wait for a keyboard line

73 0049 $KBWAIT Wait for a keyboard character

80 0050 $RSRCV Receive character from RS-232-C

85 0055 $RSTX Transmit character to RS-232-C

90 005A $RSINIT Initialize RS-232-C

96 0060 $DELAY Delay for a specified time

105 0069 $INITIO Initialize all I/O drivers

108 006C $ROUTE Route 1/0

457 01C9 $VDCLS Clear the screen
473 0109 $PRSCN Print screen contents

504 01F8 $CSOFF Turn off cassette
539 021B $VDLINE Display a line

565 0235 $CSIN Input a cassette byte
612 0264 $CSOUT Output a cassette byte
647 0287 $CSHWR Write the cassette header

653 0280 $KBBRK Check for (BREAK) key only

662 0296 $CSHIN Read the cassette header
664 0298 $CLKON Turn on the clock display

673 02A1 $CLKOFF Turn off the clock display

6681 1A19 $READY Jump to BASIC "Ready"

12339 3033 $DATE Getthedate

12342 3036 $TIME Get the time
12354 3042 $SETCAS Set cassette baud rate
14312 37E8 $PRSTAT Printer status

(Read Only)

"Go" only if:

Bit?= 0 "NOT BUSY"

Bit6 = 0 "NOT OUT OF PAPER"

Bit5 1 "DEVICE SELECT"

Bit4= 1 "NOT PRINTER FAULT"

Bits 3,2, 1 and Oare not used.

12/24

Summary of Important RAM Addresses

Address Initial
Dec Hex Contents Contents
16396 400C (BREAK) Jump Vector C9xxxx

Keyboard scan operations
Three bytes

16409 4019 Caps Lock Switch "Caps"
0 = "Upper and Lower Case"
Not 0 = "Caps Only"

16412 401C Cursor Blink Switch "Blink"
0 = "Blink"
Non-Zero = "No-Blink"

16416 4020 Cursor Address N/A
Two bytes: LSB, MSB

16419 4023 Cursor Character 176
ASCII Code 32- 255

16424 4028 Maximum Lines/Page 67
plus one

16425 4029 Number of lines printed 1
plus one

16427 4028 Line Printer Max. Line "No Max"
length less two.
255 = "No Maximum"

16872 41E8 $RSRCV Input Buffer 0
One byte

16880 41F0 $RSTX Output Buffer 0
One byte

16888 41F8 $RSINIT Baud Rate Code 85
TX Code = Most Sig. Nibble
RCV Code = Least Sig. Nibble

16889 41F9 $RSINIT Parity/Word Length/ 108
Stop-Bit Code

16890 41FA $RSINIT WAIT Switch "Wait"
0 = "Don't Wait"
Non-Zero= "Wait"

16913 4211 Cassette Baud Rate Switch N/A
0 = 500Baud
Non-Zero = 1500 Baud

12/25

TRS-80 MODEL Ill

Address Initial
Dec Hex Contents Contents

16916 4214 Video Display Scroll Protect 0
From Oto 7. Greater values
are interpreted in modulo 8

16919 4217 Time-Date 00:00:00
Six binary bytes: 00100100
SSMM HHYYDD MM

16928 4220 $ROUTE Destination Device NIA
Two-byte 110 designator

16930 4222 $ROUTE Source Device NIA
Two-byte 110 designator

12126

13 / Troubleshooting And
Maintenance
If you have problems operating your TRS-80, please check the following table of
symptoms and cures. It's also possible that you have not followed the instructions
correctly.

If you can't solve the problem, take the unit in to your local Radio Shack. We'll
have it fixed and returned to you ASAP!

Symptom

The Cass? message does not appear
when you turn on the Computer.

Possible Cause. Cure.

I . No AC power. Check power cord
connection to Computer and all
peripherals.

2. Incorrect power-up sequence.

3. Peripheral device (e.g., printer) is
not connected properly. Recheck
connection.

4. Disk system. To operate without a
TRSDOS diskette, hold down (BREAK}
while you reset or power on.

5. Video Display needs adjustment.
Check Brightness and Contrast
controls.

13/1

13/2

TRS-80 MODEL Ill

Symptom

Can't get a cassette program to
load.

Computer "hangs up" during
normal operation, requiring reset
or power-off/on

Possible Cause. Cure.

1 . Improper cassette connection.
Check connection instructions in
cassette owner's manual.

2. Cassette load speed does not match
the speed of the recorded tape. Model I
Level II BASIC programs are always
Low (500 baud). Model III programs
may be either High (1500) or Low.

3. Incorrect volume setting. Try
another volume setting.

4. Information on tape may have been
garbled due to static electricity
discharge, magnetic field, or tape
deterioration. Try to load duplicate
copy, if available.

1. Fluctuations in the AC power
supply. See AC Power Sources, below.

2. Defective or improperly installed
connector. Check all connection
cables to see that they are securely
attached and that they are not frayed or
broken.

3. Programming. Re-check the
program.

AC Power Sources

Computers are sensitive to fluctuations in the power supply at the wall socket. This
is rarely a problem unless you are operating in the vicinity of heavy electrical
machinery. The power source may also be unstable if some appliance or office
machine in the vicinity has a defective switch which arcs when turned on or off.

Your Model III TRS-80 is equipped with a specially designed, built-in AC line filter.
It should eliminate the effects of ordinary power-line fluctuations.

However, if the fluctuations are severe, you may need to take some or all of the
following steps:

• Install bypass or isolation devices in the problem-causing devices
• Fix or replace any defective (arcing) switches
• Install a separate power-line for the Computer
• Install a special line filter designed for computers and other sensitive electronic

equipment

Power line problems are rare and many times can be prevented by proper choice of
installation location. The more complex the system and the more serious the
application, the more consideration you should give to providing an ideal power
source for your Computer.

Maintenance

Your Computer requires little maintenance. It's a good idea to keep it clean and free
of dust build-up. This is especially important for the keyboard. Radio Shack sells a
custom-designed Model III dust cover you may find helpful.

If you need to clean the Computer case, use a damp, lint-free cloth.

The peripheral devices (cassette recorder, line printer, etc.) may require more
maintenance. Check the owner's manual for each peripheral in your system.

13/3

14 / Specifications
AC Power Supply

This applies to non-disk systems only. For disk systems, see the Disk System
Owner's Manual.

Power Requirements 105- 130 VAC, 60 Hz

Current Drain

(240 V AC, 50 Hz Australian)
(220 V AC, 50 Hz European)

0.83 Amps RMS

Microprocessor

Type Z-80
2.02752MHz Clock Rate

RS-232-C Interface

Standard
RS-232-C Signal
PG Protective Ground
TD Transmit Data
RD Receive Data
ATS Request To Send
CTS Clear To Send
DSR Data Set Ready
SG Signal Ground
CD Carrier Detect
DTR Data Terminal Ready
RI Ring Indicator
STD* Secondary Transmit Data
SUN* Secondary Unassigned
SRTS* Secondary Request To Send

Pin#
1
2
3
4
5
6
7
8
20
22
14
18
19

*Note: These signals are not used for the secondary functions, but are reserved for
future use.

14/1

TRS-80 MODEL Ill

RS-232-C Pin Location

Looking from the outside at the RS-232-C jack on the Model III Computer:

Parallel Printer lnterf ace

Signal Function Pin#
STROBE* 1 .5 µS pulse to clock the data from 1

processor to printer

DATA0 Bit 0 (lsb) of output data byte 3

DATA1 Bit 1 of output data byte 5

DATA2 Bit 2 of output data byte 7

DATA3 Bit 3 of output data byte 9

DATA4 Bit 4 of output data byte 11

DATA5 Bit 5 of output data byte 13

DATA6 Bit 6 of output data byte 15

DATA? Bit 7 (msb) of output data byte 17

BUSY lnputto Computer from Printer, high 21
indicates busy

PAPER lnputto Computer from Printer, high 23

EMPTY 1ndicates no paper- if Printer doesn't
provide this, signal is forced low

SELECT Input to Computer from Printer, high 25
indicates device selected

FAULT* Input to Computer from Printer, low 28
indicates fault (paper empty, light
detect, deselect, etc.)

GROUND Common signal ground 2,4,6,8, 10
12, 14, 16, 18,
20,22,24,27,
31,33,34

NC Not connected or not used 26,29,30,32

*These signals are active-low.

14/2

Printer Pin Location

Looking from the bottom rear at the printer card-edge connector as in Figure I on 2/2:

2 4 6 8 10 12 14 16 18

,: : : "':] □ t:l □ CJ Cl

.....J w t..J Cl LI t..J

3 5 7 9 11 13 15 17

Cassette lnterf ace

Suggested Input Level for Playback
from Recorder

Typical Computer Output Level to
Recorder

Remote On/Off Switching
Capability

Cassette Jack Pin Location

20
□
u
19

22 24 26
Cl Cl □

t..J w u
21 23 25

28 30 32 34
□ Cl □ t::l

]
u u LI t..J

27 29 31 33

1 to 5 Volts peak-to-peak at a
minimum impedance of 220 Ohms

800 m V peak-to-peak at 1 K Ohm

0 .5 A maximum at 6 VDC

Looking at the outside of the cassette jack on the Computer:

2

3

1. Remote Control
2. Signal Ground
3. Remote Control
4. Input from Recorder's Earphone Jack
5. Output to Recorder's Aux or Mic Jack

14/3

1 / BASIC Concepts
This chapter gives an in-depth description of how to use the full power of Mode! III
BASIC. Programmers require this information in order to build powerful and
efficient programs. However, if you are still somewhat of a novice, you might want
to skip this chapter for now, keeping in mind that the information is here when you
need it.

This chapter is divided into four sections:

1. Overview - Elements of a Program. This section defines many of the terms
we will be using in the chapter.

2. How BASIC Handles Data. Here we discuss how BASIC classifies and stores
data. This will show you how to get BASIC to store your data in its most efficient
format.

3. How BASIC Manipulates Data. This will give you an overview of all the
different operators and functions you can use to manipulate and test your data.

4. How to Construct an Expression. Understanding this topic will help you form
powerful statements instead of using many short ones.

1/1

TRS-80 MODEL Ill

Overview - Elements of a
Program
This overview defines the elements of a program:

The program itself, which consists of .. .
Statements, which may consist of .. .

Expressions
We will refer to these terms during the rest of this chapter.

Program
A program is made up of one or more numbered lines. Each line contains one or
more BASIC statements. BASIC allows line numbers from Oto 65529 inclusive. You
may include up to 255* characters per line, including the line number. You may
also have two or more statements to a line, separated by colons.

*You can only type in 240 characters for new lines; using the Edit Mode, you can
add the extra 15 characters.

Here is a sample program:

Line BASIC Colon between ~ BASIC statement
n~mb_::(~statements ~ __ .,,,,,..,,,._...... __ _____

100 CLS: PRINT "NORMAL MODE ... "
1) 0 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
120 FOR I= 1 TO 1000: NEXT I
130 CLS: PRINT CHR$(23); "DOUBLE-SIZE MODE ... "
140 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
150 END

When BASIC executes a program, it handles the statements one at a time, starting at
the first and proceeding to the last. Some statements, such as GOTO, ON ... GOTO,

GOSUB, change this sequence.

1/2

Statements

A statement is a complete instruction to BASIC, telling the Computer to perform
specific operations. For example:

GOTO100

Tells the Computer to perform the operations of (1) locating line 100 and (2)
executing the statement on that line.

END

Tells the Computer to perform the operation of ending execution of the program.

Many statements instruct the computer to perform operations with data. For
example, in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the Computer to print the
data inside the quotes.

Expressions

An expression is actually a general term for data. There are four types of
expressions:

l. Numeric expressions, which are composed of numeric data. Examples:

(1 + 5.2)/3
D
5*8
3.7682
ABS(X) + RND(0)
SIN(3 + E)

2. String expressions, which are composed of character data. Examples:

A$
"STRING"
"STRING"+ "DATA"
MO$+ "DATA"
MID$(A$,2,5) + MID$("MAN", 1,2)
M$ +A$+ 8$

1/3

TRS-80 MODEL Ill

3. Relational expressions, which test the relationship between two expressions.
Examples:

A=1
A>8

4. Logical expressions, which test the logical relationship between two
expressions. Examples:

A$ = "YES" AND 8$ = "NO"
C>5 OR M<B OR 0>2
578 AND 452

Functions

Functions are automatic subroutines. Most BASIC functions perform computations
on data. Some serve a special purpose such as controlling the video display or
providing data on the status of the computer. You may use functions in the same
manner that you use any data - as part of a statement.

These are some ofBASIC's functions:

INT
ABS
STRING$

How Basic Handles Data
Model III BASIC offers several different methods of handling your data. Using these
methods properly can greatly improve the efficiency of your program. In this
section we will discuss:

1. Ways of Representing Data
a. Constants
b. Variables

2. How BASIC Stores Data
a. Numeric (integer, single precision, double precision)
b. String

3. How BASIC Classifies Constants
4. How BASIC Classifies Variables
5. How BASIC Converts Data

1/4

Ways of Representing Data

BASIC recognizes data in two forms- either directly, as constants, or by reference
to a memory location, as variables.

Constants

All data is input into a program as ''constants'' - values which are not subject to
change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2

contains one string constant,

1 PLUS 1 EQUALS

and one numeric constant

2

In these examples, the constants ''input'' to the PRINT statement. They tell PRINT

what data to print on the Display.

These are more examples of constants:

3.14159
1.775E+3
"NAME TITLE"
57

Variables

"L. 0. SMITH"
"0123456789ABCDEF"

· -123.45E-8
"AGE"

A variable is a place in memory- a sort of box or pigeonhole-where data is
stored. Unlike a constant, a variable's value can change. This allows you to write
programs dealing with changing quantities. For example, in the statement:

A$= "OCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if this statement
appeared later in the program:

A$ = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would now contain the
data FINANCE.

1/5

TRS-80 MODEL Ill

Variable Names

In BASIC, variables are represented by names. Variable names must begin with a
letter, A through Z. This letter may be followed by one more character- either a
digit or a letter.

For example

AM A A1 81 AB

are all valid and distinct variable names.

Variable names may be longer than two characters. However, only the first two
characters are significant in BASIC.

For example:

SUM SU SUPERNUMERARY

are all treated as the same variable by BASIC.

Reserved Words

Certain combinations of letters are reserved as BASIC keywords, and cannot be used
in variable names. For example:

OR LAND LENGTH MIFFED

cannot be used as variable names, because they contain the reserved of
OR, AND, LEN, andIF, respectively.

See the Appendix for a list of reserved words.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables. They can only refer to
one data item.

Variables may also be subscripted so that an entire list of data can be stored under
one variable name. This method of data storage is called an array. For example, an
array named A may contain these elements (subscripted variables):

A(O) A(1) A(2) A(3) A(4)

1/6

You may use each of these elements to store a separate data item, such as:

A(0) = 5.3
A(1) = 7.2
A(2) = 8.3
A(3) = 6.8
A(4) = 3.7

In this example, array A is a one-dimensional array, since each element contains
only one subscript. An array may also be two-dimensional, with each element
containing two subscripts. For example, a two-dimensional array named X could
contain these elements:

X(0,0) = 8.6
X(1,0) = 7.3

X(0,1) = 3.5
X(1, 1) = 32.6

With BASIC, you may have as many dimensions in your array as you would like.
Here is an example of a three-dimensional array named L which contains these 8
elements:

L(0,0,0) = 35233
L(0,0, 1) = 52000

L(1,0,0) = 33333
L(1,0, 1) = 53853

L(0, 1,0) = 96522
L(0, 1, 1) = 10255

L(1, 1,0) = 96253
L(1 , 1 , 1) = 79654

BASIC assumes that all arrays contain 11 elements in each dimension. If you want
more elements you must use the DIM statement at the beginning of your program to
dimension the array.

For example, to dimension array L, put this line at the beginning of the program:

DIML(1,1,1)

to allow room for two elements in the first dimension; two in the second; and two in
the third for a total of 2 * 2 * 2 = 8 elements.

See the Arrays chapter later on in this manual.

1/7

TRS-80 MODEL Ill

How BASIC Stores Data

The way that BASIC stores data determines the amount of memory it will consume
and the speed in which BASIC can process it.

Numeric Data

You may get BASIC to store all numbers in your program as either integer, single
precision, or double precision. In deciding how to get BASIC to store your numeric
data, remember the tradeoffs. Integers are the most efficient and the least precise.
Double precision is the most precise and least efficient.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the range of - 32768 to
32767. An integer value requires only two bytes of memory for storage. Arithmetic
operations are faster when both operands are integers.

For example:

32000 -2 500 -12345

can all be stored as integers.

Single-Precision Type
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to 7 significant digits, and can represent
normalized values* with exponents up to ±38, i.e., numbers in
the range:

[-1 X 1038 , -1 X 10-38] [l X 10-38 , 1 X 1038]

A single-precision value requires 4 bytes of memory for storage. BASIC assumes a
number is single-precision if you do not specify the level of precision.

*In this reference manual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12. 3 expressed in normalized
form is 1.23 x 10.

1/8

For example:

10.001 -200034 1.774E6

can all be stored as single-precision values.

6.024E-23 123.4567

Note: When used in a decimal number, the symbol E stands for ''single-precision
times 10 to the power of ... '' Therefore 6.024E-23 represents the single-precision
value:

6.024x 10-23

Double-Precision Type
(Maximum Precision, Slowest in Computations)

Double-precision numbers can include up to 17 significant digits, and can represent
values in the same range as that for single-precision numbers. A double-precision
value requires 8 bytes of memory for storage. Arithmetic operations involving at
least one double-precision number are slower than the same operations when all
operands are single-precision or integer.

For example:

1010234578
-8. 7777651010
3.1415926535897932
8.00100708D12

can all be stored as double-precision values.

Note: When used in a decimal number, the symbol D stands for '' double-precision
times 10 to the power of ... '' Therefore 8.00100708 D 12 represents the value

8.00100708 X 1012

1/9

TRS-80 MODEL m

String Data
Strings (sequences of characters) are useful for storing non-numeric information
such as names, addresses, text, etc. You may store any ASCII characters as a string.
(A list of ASCII characters is in the Appendix).

For example, the data constant:

Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and blank) in the string is
stored as an ASCII code, requiring one byte of storage. BASIC would store the above
string constant internally as:

Hex
Code

ASCII
Char
acter

A string can be up to 255 characters long. Strings with length zero are called' 'null''
or' 'empty''.

How BASIC Classifies Constants

When BASIC encounters a data constant in a statement, it must determine the type of
the constant: string, integer, single precision, or double precision. First, we will list
the rules BASIC uses to classify the constant. Then we will show you how you can
override these rules, if you want a constant stored differently:

Rulel

If the value is enclosed in double-quotes, it is a string. For example:

"YES"
"3331 Waverly Way"
"1234567890"

the values in quotes are automatically classified as strings.

Rule2

If the value is not in quotes, it is a number. (An exception to this rule is during data
input by an operator, and in DATA lists. See INPUT, INKEY$, and DATA)

1/10

For example:

123001
1
~-7.3214E+6

are all numeric data.

Rule3

Whole numbers in the range of - 32768 to 32767 are integers. For example:

12350
12

10012

are integer constants.

Rule4

If the number is not an integer and contains seven or fewer digits, it is
single-precision. For example:

1234567
-1.23
1.3321

are all single-precision.

Rule5

If the number contains more than seven digits, it is double precision. For example,
these numbers:

1234567890123456
- 1000000000000.1
2. 777000321

are all double precision.

1/11

TRS-80 MODEL Ill

Type Declaration Tags

You can override BASIC' s normal typing criteria by adding the following ''tags'' to
the end of the numeric constant:

Makes the .number single-precision. For example, in the statement:

A= 12.345678901234!

the constant is classified as single-precision, and shortened to seven digits:
12.34567

E Single-precision exponential format. The E indicates the constant is to be
multipled by a specified power of 10. For example:

A= 1.2E5

stores the single-precision number 120000 in A.

Makes the number double-precision. For example, in statement:

PRINT3#/7

the first constant is classified as double-precision before the division takes
place.

D Double-precision exponential format. The D indicates the constant is to be
multipled by a specified power of 10. For example:

A= 1 .23456789D - 1

The double-precision constant has the value O .123456789.

How BASIC Classifies Variables

When BASIC encounters a variable name in the program, it classifies it as either a
string, integer, single- or double-precision number.

BASIC classifies all variable names as single-precision initially. For example:

AB AMOUNT XY L

are all single-precision initially. If this is the first line of your program:

LP= 1.2

BASIC will classify LP as a single-precision variable.

1/12

BASIC

However, you may assign different attributes to variables by using definition
statements at the beginning of your program:

DEFINT- Defines variables as integer
DEFDBL- Defines variables as double-precision
DEFSTR - Defines variables as string
DEFSNG-Defines variables as single-precision. (Since BASIC classifies all
variables as single-precision initially anyway, you would only need to use
DEFSNG if one of the other DEF statements were used.

For example:

DEFSTR L

makes BASIC classify all variables which start with Las string variables. After this
statement, the variables:

L LP LAST

can all hold string values only.

Type Declaration Tags

As with constants, you can always override the type of a variable name by adding a
type declaration tag at the end. There are four type declaration tagsfor variables:

%
!

$

Integer
Single-precision
Double-precision n
String

For example:

1% FT% NUM% COUNTER%

are all integer variables, regardless of what attributes have been assigned to the
letters I, F, N and c.

T! RY! QUAN! PERCENT!

are all single-precision variables, regardless of what attributes have been assigned
to the letters T, R, Q and P.

X# RR# PREV# LSTNUM#

are all double-precision variables, regardless of what attributes have been assigned
to the letters X, R, P and L.

1/13

TRS-80 MODEL Ill

0$ CA$ WAD$ ENTRY$

are all string variables, regardless of what attributes have been assigned to the
letters Q, C, Wand E.

Note that any given variable name can represent four different variables. For
example:

AS# AS! AS% AS$

are all valid and distinct variable names.

One further implication of type declaration: Any variable name used without a
tag is equivalent to the same variable name used with one of the four tags. For
example, after the statement:

DEFSTR C

the variable referenced by the name C 1 is identical to the variable referenced by the
name Cl$.

How BASIC Converts Numeric Data

Often your program might ask BASIC to assign one type of constant to a different
type of variable. For example:

A%= 2.34

In this example, BASIC must first convert the single precision constant 2.34 to an
integer in order to assign it to the integer variable A%.

You might also want to convert one type of variable to a different type, such as:

A#=A%
A!=A#
A!=A%

The conversion procedures are listed on the following pages.

1/14

Single- or double-precision to integer type

BASIC returns the largest integer that is not greater than the original value.

Note: The original value must be greater than or equal to -32768, and less
than 32768.

Examples

A%= -10.5

Assigns A% the value -11 .

A%=32767.9

Assigns A% the value 32767.

A%=2.5D3

Assigns A% the value 2500.

A%= 123.45678901234578

Assigns A% the value-124.

A%= -32768.1

Produces an Overflow Error (out of integer range).

Integer to single- or double-precision

No error is introduced. The converted value looks like the original value with zeros
to the right of the decimal place.

Examples

A#=32767

Stores 327 67. 000000000000 in A#.

A!= -1234

Stores-1234.000 in A!.

1/15

TRS-80 MODEL Ill

Double- to single-precision

This involves converting a number with up to 17 significant digits into a number
with no more than seven. BASIC chops off (truncates) the least significant digits to
produce a seven-digit number. Before Printing such a number, BASIC rounds it off
(4/5 rounding) to six digits.

Examples

A!= 1.234567890124567

Stores 1.234567 in A! However, the statement:

PRINT A!

will display the value 1.23457, because only six digits are displayed. The full seven
digits are stored in memory.

A!= 1.3333333333333333

Stores 1.333333 in A!.

Single- to double-precision

To make this conversion, BASIC simply adds trailing zeros to the single-precision
number. If the original value has an exact binary representation in single-precision
format, no error will be introduced. For example:

A#=1.5

Stores 1.5000000000000 in A#, since 1.5 does have an exact binary representation.

However, for numbers which have no exact binary representation, an error is
introduced when zeros are added. For example:

A#=1.3

Stores l.299999952316284 in A#.

Because most fractional numbers do not have an exact binary representation, you
should keep such conversions out of your programs. For example, whenever you
assign a constant value to a double-precision variable, you can force the constant to
be double-precision:

A#= 1.3# A#=1.3D

Both store 1.3 in A#.

Here is a special technique for converting single-precision to double-precision,
without introducing an error into the double-precision value. It is useful when the
single-precision value is stored in a variable.

1/16

Take the single-precision variable, convert it to a string with STR$, then convert the
resultant string back into a number with v AL. That is, use:

VAL (STA$ (single-precision variable))

For example, the following program:

10 A!= 1.3
20 A#=A!
30 PRINTA#

prints a value of:

1.299999952316284

Compare with this program:

10A!= 1.3
20A# = VAL (STR$(A!))
30PRINTA#

which prints a value of:

1.3

The conversion in line 20 causes the value in A! to be stored accurately in
double-precision variable A#.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or vice versa. For
example, the statements:

A$= 1234
A%= "1234"

are illegal. (Use STR$ and v AL to accomplish such conversions.)

1/17

TRS-80 MODEL Ill

How BASIC Manipulates Data
You have many fast methods you may use to get BASIC to count, sort, test and
rearrange your data. These methods fall into two categories:

1. Operators
a. numeric
b. string
C. relational
d. logical

2. Functions

Operators

An operator is the single symbol or word which signifies some action to be taken on
either one or two specified values referred to as operands.

In general, an operator is used like this:

~uan~l~erawr~erand~
operand-I and -2 can be expressions. A few operations take only one operand,

and are used like this:

operator operand

Examples:

6+2

The addition operator + connects or relates its two operands, 6 and 2, to produce
the result 8.

-5

The negation operator - acts on a single operand 5 to produce the result negative 5.

Neither 6 + 2 or - 5 can stand alone; they must be used in statements to be
meaningful to BASIC. For example:

A=6+2
PRINT-5

1/18

Operators fall into four categories:
• Numeric
• String
• Relational
• Logical

based on the kinds of operands they require and the results they produce.

Numeric Operators

Numeric Operators are used in numeric expressions. Their operands must always
be numeric, and the result they produce is one numeric data item.

In the descriptions below, we use the terms integer, single-precision, and
double-precision operations. Integer operations involve two-byte operands,
single-precision operations involve four-byte operands, and double-precision
operations involve eight-byte operands. The more bytes involved, the slower the
operation.

There are five different numeric operators. Two of them, sign + and sign , are
unary, that is, they have only one operand. A sign operator has no effect on the
precision of its operand.

For example, in the statement:

PRINT -77, + 77

the sign operators - and + produce the values negative 77 and positive 77,

respectively.

Note: When no sign operator appears in front of a numeric term, + is assumed.

The other numeric operators are all binary, that is, they all take two operands.
These operators are:

+

*
I
[or (I)

Addition
Subtraction
Multiplication
Division
Exponentiation. Press the CD key to type in this operator.

1/19

TRS-80 MODEL Ill

Addition

The + operator is the symbol for addition. The addition is done with the precision
of the more precise operand (the less precise operand is converted).

For example, when one operand is integer type and the other is single-precision, the
integer is converted to single-precision and four-byte addition is done. When one
operand is single-precision and the other is double-precision, the single-precision
number is converted to double-precision and eight-byte addition is done.

Examples:

PRINT 2+3
Integer addition.

PRINT 3.1 + 3
Single-precision addition.

PRINT 1.2345678901234567 + 1
Double-precision addition.

Subtraction

The - operator is the symbol for subtraction. As with addition, the operation is
done with the precision of the more precise operand (the less precise operand is
converted).

Examples:

PRINT 33 - 11

Integer subtraction.

PRINT 33 11.1

Single-precision subtraction.

PRINT 12.345678901234567 11
Double-precision subtraction.

1/20

Multiplication

The* operator is the symbol for multiplication. Once again, the operation is done
with the precision of the more precise operand (the less precise operand is
converted).
Examples:

PRINT 33 * 11

Integer multiplication.

PR I NT 33 * 11 . 1

Single-precision multiplication.

PRINT 12.345678901234567 * 11

Double-precision multiplication.

Division

The/ symbol is used to indicate ordinary division. Both operands are converted to
single or double-precision, depending on their original precision:
• If either operand is double-precision, then both are converted to

double-precision and eight-byte division is performed.
• If neither operand is double-precision, then both are converted to

single-precision and four-byte division is performed.

Examples:

PRINT 3/4
Single-precision division.

PRINT 3.8/4

Single-Precision division.

PRINT 3 / 1.2345678901234567

Double-precision division.

1/21

TRS-80 MODEL Ill

Exponentiation

The symbol [denotes exponentiation. It converts both its operands to
single-precision, and returns a single-precision result.

Note: To enter the [operator, press(]).

For example:

PRINT6[.3

prints 6 to the .3 power.

String Operator

BASIC has a string operator (+)which allows you to concatenate (link) two
strings into one. This operator should be used as part of a string expression. The
operands are both strings and the resulting value is one piece of string data.

The + operator links the string on the right of the sign to the string on the
left. For example:

PRINT "CATS" + "LOVE" + "MICE"

prints:

CATSLOVEMICE

Since BASIC does not allow one string to be longer than 255 characters, you will
get an error if your resulting string is too long.

Relational Operators

Relational operators compare two numerical or two string expressions to form a
relational expression. This expression reports whether the comparison you set up
in your program is true or false. It will return a - l if the relation is true; a o if it
is false.

1/22

Numeric Relations

This is the meaning of the operators when you use them to compare numeric
expressions:

<
>

<>or><
=<or<=
=>or>

Lessthan
Greater than
Equal to
Not equal to
Less than or equal to
Greater than or equal to

Examples of true relational expressions:

1<2
2<>5
2<=5
2<=2
5>2
7=7

String Relations

BASIC

The relational operators for string expressions are the same as above, although their
meanings are slightly different. Instead of comparing numerical magnitudes, the
operators compare their ASCII sequence. This allows you to sort string data:

<
>

><or<>
<=
>=

Precedes
Follows
Has the same precedence
Does not have the same precedence
Precedes or has the same precedence
Follows or has the same precedence

BASIC compares the string expressions on a character-by-character basis. When
it finds a non-matching character, it checks to see which character has the lower
ASCII code. The character with the lower ASCII code is the smaller (precedent) of
the two strings.

Note: The appendix contains a listing of ASCII codes for each character.

Examples of true relational expressions:
"A" < "B"

The ASCII code for A is decimal 65; for B it's 66.

"CODE" < "COOL"

1/23

TRS-80 MODEL Ill

The ASCII code for O is 79; for D it's 68.

If while making the comparison, BASIC reaches the end of one string before
finding non-matching characters, the shorter string is the precedent. For
example:

"TRAIL" < "TRAILER"

Leading and trailing blanks are significant. For example:

"A" < "A"

ASCII for the space character is 32; for A, it's 65.

"Z - 80" < "Z BOA"

The string on the left is four characters long; the string on the right is five.

How to Use Relational Expressions

Normally, relational expressions are used as the test in an IF/THEN statement. For
example:

IF A= 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1 . If it is, BASIC prints the message.
IF A$ < 8$ THEN 50

If string A$ alphabetically precedes string B$, then the program branches to line
50.

IF A$ = "YES" THEN PRINT A$

If R$ equals YES then the message stored as A$ is printed.

However, you may also use relational expressions simply to return the true or
false results of a test. For example:

PRINT 7 = 7

Prints - 1 since the relation tested is true.

PRINT "A" > "B"

Prints O because the relation tested is false.

1/24

BASIC

Logical Operators

Logical operators make logical comparisons. Normally, they are used in IF/THEN

statements to make a logical test between two or more relations. For example:

IFA = 1 OR C= 2 THEN PRINT X

The logical operator, OR, compares the two relations A= 1 and C = 2.

Logical operators may also be used to make bit-comparisons of two numeric
expressions.

For this application, BASIC does a bit-by-bit comparison of the two operands,
according to predefined rules for the specific operator.

Note: The operands are converted to integer type, stored internally as 16-bit,
two's complement numbers. To understand the results of bit-by-bit
comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit
manipulation.

Meaning of First Second
Operator Operation Operand Operand

AND When both bits are 1 , the 1 1
result will be 1 . Otherwise, 1 0
the result will be O. 0 1

0 0

OR Result will be 1 unless both 1 1
bits are 0. 1 0

0 1
0 0

NOT Result is opposite of bit. 1
0

Result

1
0
0
0

1
1
1
0

0
1

1/25

TRS-80 MODEL m

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs the operations
according to a well-defined hierarchy, so that results are always predictable.

Parentheses

When a complex expression includes parentheses, BASIC always evaluates the
expressions inside the parentheses before evaluating the rest of the expression.
For example, the expression:

8 - (3-2)

is evaluated like this:

3 2 = 1
8 - 1 = 7

With nested parentheses, BASIC starts evaluating the innermost level first and
works outward. For example:

4 * (2 -- (3 - 4))

is evaluated like this:

3-4= -1
2-(-1)=3

4*3 = 12

Order of Operations

When evaluating a sequence of operations on the same level of parenthesis,
BASIC uses a hierarchy to determine what operation to do first.

The two listings below show the hierarchy BASIC uses. Operators are shown in
decreasing order of precedence. Operators listed in the same entry in the table
have the same precedence and are executed as encountered from left to right:

Numerical operations:

1/26

[or (Exponentiation)
+, (Unary sign operands [not addition and subtraction])

*' I
+, (Addition and subtraction)

<, >, =, <=, >=, <>
NOT
AND
OR

String operations:

+
<,>, =,<=,>=,<>

For example, in the line:

X*X + 5[2.8

BASIC will find the value of 5 to the 2.8 power. Next, it will multiply X * X, and
finally add this value to the value of 5 to the 2.8. If you want BASIC to perform the
indicated operations in a different order, you must add parentheses. For
example:

X* (X + 5 [2.8)

or

X* (X + 5) [2.8

Here's another example:

IF X = 0 OR Y>O AND 2=1 THEN 255

The relational operators = and > have the highest precedence, so BASIC

performs them first, one after the next, from left to right. Then the logical
operations are performed. AND has a higher precedence than OR, so BASIC

performs the AND operation before OR.

If the above line looks confusing because you can't remember which operator is
precedent over which, then you can use parentheses to make the sequence
obvious:

IF X= 0 OR ((Y > 0) AND (Z = 1)) THEN 255

1/27

TRS-80 MODEL Ill

Functions

A function is a built-in sequence of operations which BASIC will perform on data.
A function is actually a subroutine which usually returns a data item. BASIC

functions save you from having to write a BASIC routine, and they operate faster
than a BASIC routine would.

A function consists of a keyword which is usually followed by the data that you
specify. This data is always enclosed in parentheses; if more than one data item is
required, the items are separated by commas.

If the data required is termed' 'number'' you may insert any numerical expression.
If it is termed ''string'' you may insert a string expression.

Examples:

SQR(A + 6)

Tells BASIC to compute the square root of (A + 6).

MID$ (A$, 3, 2)

Tells BASIC to return a substring of the string A$, starting with the third character,
with a length of 2.

Functions cannot stand alone in a BASIC program. Instead they are used in the
same way you use expressions - as the data in a statement.

For example

A= SQR(7)

Assigns A the data returned as the square root of 7.

PRINT MID$ (A$, 3, 2)

Prints the substring of A$ starting at the third character and two characters long.

If the function returns numeric data, it is a numeric function and may be used in a
numeric expression. If it returns string data, it is a string function and may be
used in a string expression.

1/28

How to Construct an Expression
Understanding how to construct an expression will help you put together
powerful statements - instead of using many short ones. In this section we will
discuss the two kinds of expressions you may construct:

• Simple
• Complex

as well as how to construct a function.

As we have stated before, an expression is actually data. This is because once
BASIC performs all the operations, it returns one data item. An expression may be
string or numeric. It may be composed of:

• Constants
• Variables
• Operators
• Function~

Expressions may be either simple or complex:

A simple expression consists of a single term: a constant, variable or function.
If it is a numeric term, it may be preceded by an optional + or - sign.

For example:

+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of one numeric term.

A$ STRING$ (20, A$) "WORD" "M"

are all simple string expressions since they only consist of one string term.

Here's how a: simple expression is formed: ---------,
+ G CONSTANT

'-...,/

VARIABLE

FUNCTION

A complex expression consists of two or more terms (simple expressions)
combined by operators. For example:

A-1 1=1 AANDB ABS (B) + LOG(2)

are all examples of complex numeric expressions. (Notice that you can use the
relational expression (1 = 1) and the logical expression (5 AND 3) as a complex
numeric expression since both actually return numeric data.)

A$+B$ "2"+2$ STRING$(10, "A")+ "M"

are all examples of complex string expressions.

1/29

TRS-80 MODEL Ill

This is how a complex numeric expression is formed:

SIMPLE
EXPRESSION

This is how a complex string expression is formed:

SIMPLE EXPRESSION

Most functions, except functions returning system information, require that you
input either or both of the following kinds of data:

• One or more numeric expressions
• One or more string expressions.

This is how a function is formed:

KEYWORD EXPRESSION

If the data returned is a number, the function may be used as a term in a numeric
expression. If the data is a string, the function may be used as a term in a string
expression.

1/30

2/Commands
Whenever a prompt> is displayed, your Computer is in the ''Immediate'' or
''Command'' Mode. Youcantypeinacommand, (ENTER)it, and the Computer will
respond immediately. This chapter describes the commands you'll use to control
the Computer-to change modes, begin input and output procedures, alter
program memory, etc. All of these commands-exceptCONT-mayalso be used
inside your program as statements. In some cases this is useful; other times it is
just for very specialized applications.

The commands described in this chapter are:

AUTO
CLEAR
CLOAD
CLOAD?

CONT
CSAVE
DELETE

AUTO line number, increment

EDIT
LIST
LUST
NEW

RUN
SYSTEM
TROFF
TRON

Tums on an automatic line numbering function for convenient entry of programs -
all you have to do is enter the actual program statements. You can specify a
beginning line number and an increment to be used between line numbers. Or you
can simply type AUTO and press (ENTER), in which case line numbering will begin at
10 and use increments of 10. Each time you press (ENTER), the Computer will
advance to the next line number.

Examples:

AUTO
AUTO5,5
AUTO 100
AUTO 100, 25
AUTO ,10

to use line numbers

IO, 20, 30, .. .

5. IO, 15

100, 110. 120, ...

100, 125, 150,. ..

0, 10, 20, ...

To tum off the AUTO function, press the (BREAK) key. (Note: When AUTO brings up
a line number which is already being used, an asterisk will appear beside the line
number. If you do not wish to re-program the line, press the (BREAK) key to turn off
AUTO function.)

2/1

TRS-80 MODEL Ill

CLEARn

When used without an argument (e.g., type CLEAR and press (ENTER)), this
command resets all numeric variables to zero, and all string variables to null. When
used with an argument (e.g., CLEAR 100), this command performs a second
function in addition to the one just described: it makes the specified number of bytes
available for string storage.

Example: CLEAR 100 makes 100 bytes available for strings. When you turn on the
Computer a CLEAR 50 is executed automatically.

CLOAD ''file name''

Lets you load a BASIC program stored on cassette. Place recorder/player in Play
mode (be sure the p,roper connections are made and cassette tape has been re-wound
to proper position). The file name may be any single character except the
double-quote (' ').

Note: See ''Using the Cassette Interface'' in the Operation Section for instructions
on which baud rate to use.

Entering CLOAD will turn on the cassette machine and load the first program
encountered. BASIC also lets you specify a desired ''file'' in your CLO AD

command. For example, CLOAD "A" will cause the Computer to ignore programs
on the cassette until it comes to one labeled ''A''. So no matter where file ''A'' is
located on the tape, you can start at the beginning of the tape; file ''A'' will be
picked out of all the files on the tape and loaded. As the Computer is searching for
file ''A'', the names of the files encountered will appear in the upper right corner of
the Display, along with a blinking '' *''.

Only the first character of the file name is used by the Computer for CLO AD,

CLO AD?' and CSA VE operations.

Loading a program from tape automatically clears out the previously stored
program. See also CSA VE.

2/2

CLOAD? ''file name''

Lets you compare a program stored on cassette with one presently in the Computer.
This is useful when you have saved a program onto tape (using CSA VE) and you
wish to check that the transfer was successful. You may specify CLO AD'?
''file-name''. If you don't specify a file-name, the first program encountered will
be tested. During CLO AD?, the program on tape and the program in memory are
compared byte for byte. If there are any discrepancies (indicating a bad dump), the
message "BAD" will be displayed. In this case, you should CSA VE the program
again. (CLO AD?, unlike CLO AD, does not erase the program memory.)

Be sure to type the question mark or the Computer will interpret your command as
CLOAD.

CONT

When program execution has been stopped (by the (BREAK) key or by a STOP
statement in the program), type CONT and (ENTER) to continue execution at the point
where the stop or break occurred. During such a break or stop in execution, you
may examine variable values (using PRINT) or change these values. Then type CONT
and CENTER) and execution will continue with the current variable values. CONT,
when used with STOP and the (BREAK) key, is primarily a debugging tool.

NOTE: You cannot use CONT after EDITing your program lines or otherwise
changing your program. CONT is also invalid after execution has ended normally.
See also STOP.

CSA VE ''file name''

Stores the resident program on cassette tape. (Cassette recorder must be properly
connected, cassette loaded, and in the Record mode, before you enter the CSA VE
command.) You must specify a file-name with this command. This file-name may
be any alpha-numeric character other than double-quote (' '). The program stored
on tape will then bear the specified file-name, so that it can be located by a CLO AD
command which asks for that particular file-name. You should always write the
appropriate file-names on the cassette case for later reference.

Examples:

CSAVE "1"
CSAVE"A"

saves resident program and attaches label '' 1 ''
saves resident program and attaches label ''A''

See also CLOAD. and' 'Using the Cassette Interface'' in the Operation Section.

2/3

TRS-80 MODEL Ill

DELETE line number-line number

Erases program lines from memory. You may specify an individual line or a
sequence of lines, as follows:

DELETE line number
DELETE line number-line number

Erases one line as specified
Erases all program lines starting
with first line number specified
and ending with last number
specified

DELETE-line number Erases all program lines up to
and including the specified
number

The upper line number to be deleted must be a currently used number.

Examples:

DELETES

DELETE 11-18

Erases line 5 from memory (error if line 5
not used)
Erases lines 11 , 18 and every line in between

If you have just entered or edited a line, you may delete that line simply by entering
DELETE. (use a period instead of the line number).

EDIT line number

Puts the Computer in the Edit Mode so you can modify your resident program. The
longer and more complex your programs are, the more important EDIT will be. The
Edit Mode has its own selection of subcommands, and we have devoted Chapter 9
to the subject.

LIST line number-line number

Instructs the Computer to display all programs lines presently stored in memory. If
you enter LIST without an argument, the entire program will scroll continuously up
the screen. To stop the automatic scrolling, press (SHIFT) and@ simultaneously.
This will freeze the display. Press any key to release the ''pause'' and continue the
automatic scrolling.

2/4

To examine one line at a time, specify the desired line number as an argument in the
LIST command. To examine a certain sequence of program lines, specify the first
and last lines you wish to examine.

Examples:

LIST50
LIST 50-150
LIST50-
LIST.
LIST -50

LLIST

Displays line 50
Displays line 50, 150 and everything in between
Displays line 50 and all higher-numbered lines
Displays current line (line just entered or edited)
Displays all lines up to and including line 50

Works like LIST, but outputs to the Printer

LUST
LLIST100-

LLIST 100-200
LUST.
LLIST-100

See LIST.

NEW

Lists current program to printer.
Lists line 100 to the end of the program to the
line printer.
Lists line 100 through 200 to the line printer.
Lists current line to the line printer.
Lists all lines up to and including line 100 to the line
printer.

Erases all program lines, sets numeric variables to zero and string variables to null.
It does not change the string space allocated by a previous CLEAR number
statement.

NEW is used in the following program to provide password protection.

10 INPUT A$: IF A$<> "E" THEN 65520
20 REM
30 REM REST OF PROGRAM HERE
40 REM
65519 END
65520 NEW

You can't run the rest of the program until you enter the correct password, in this
caseanE.

2/5

TRS-80 MODEL Ill

RUN line number

Causes Computer to execute the program stored in memory. If no line number is
specified, execution begins with lowest numbered program line. If a line number is
specified, execution begins with the line number. (Erroroccurs if you specify an
unused line number.) Whenever RUN is executed, Computer also executes a
CLEAR.

Examples:

RUN
RUN 100

Execution begins at lowest-numbered line
Execution begins at line 100

RUN may be used inside a program as a statement; it is a convenient way of starting
over with a clean slate for continuous-loop programs such as games.

To execute a program without CLEARing variables, use GOTO.

SYSTEM

Puts the Computer in the System Mode, which allows you to load object files
(machine-language routines or data). Radio Shack offers several
machine-language software packages, such as the Editor-Assembler. You can also
create your own object files using the TRS-80 Editor/ Assembler.

To load an object file: Type SYSTEM and (ENTER)

*?

will be displayed. Now enter the file name (no quotes are necessary) and the tape
will begin loading. During the tape load, the familiar asterisks will flash in the
upper right-hand corner of the Video Display. When loading is complete, another

*?

will be displayed. Type in a slash-symbol/ followed by the address (in decimal
form) at which you wish execution to begin. Or you may simply type in the
slash-symbol and (ENTER) without any address. In this case execution will begin at
the address specified by the object file.

NOTE: BASIC object files are stored as blocks. Further, each block has its own
check sum. Should a check sum error occur while loading, the leftmost asterisk will
change into the letter C. If this occurs you will have to reload the entire object file.
(If the tape motion doesn't stop, hold down (BREAK) until READY returns.)

See' 'Using the Cassette Interface'' in the Operation Section for information on
which baud rate to use and the procedures for loading a system tape.

2/6

TROFF

Tums off the Trace function. See TRON.

TRON

Tums on a Trace function that lets you follow program-flow for debugging and
execution analysis. Each time the program advances to a new program line, that
line number will be displayed inside a pair of brackets.

For example, enter the following program:

10 PRINT "LINE 10"
20 INPUT "PRESS <ENTER> TO BEGIN THE LOOP"; X
:](ZJ PRINT II HERE WE GO a II n

11

Li,(l.1 GOTO 30

Now type in TRON (ENTER), and RUN (ENTER).

< l fZJ>L I NE l. (ll
<20>PRESS <ENTER> TO BEGIN THE LOOP?
<30)HERE WE GOaaa
<40><30>HERE WE GOaan
<40><30>HERE WE GOaan
etc.

(Press (SHIFT) and@ simultaneously to pause execution and freeze display. Press
any key to continue with execution.)
As you can see from the display, the program is in an infinite loop.

The numbers show you exactly what is going on. (To stop execution, press
(BREAK).)

To tum off the Trace function, enter TROFF. TRON and TROFF may be used inside
programs to help you tell when a given line is executed.

For Example

50 TRON
60 A == A + 1
70 TFWFF

might be helpful in pointing out every time line 60 is executed (assuming execution
doesn't jump directly to 60 and bypass 50). Each time these three lines are
executed, <60> <70> will be displayed. Without TRON, you wouldn't know
whether the program was actually executing line 60. After a program is debugged,
TRON and TROFF lines can be removed.

2/7

3/Input-Output
The statements described in this chapter let you send data from Keyboard to
Computer, Computer to Display, and back and forth between Computer and the
Cassette and the Line Printer (if you have one). These will primarily be used inside
programs to input data and output results and messages.

Statements covered in this chapter:

PRINT

@(PRINT modifier)
TAB ((PRINT modifier)
USING (PRINT formatter)

PRINT item list

INPUT
DATA
READ
RESTORE

LPRINT
PRINT #-1 (Output to Cassette)
INPUT #-1 (Input to Cassette)

Prints an item or a list of items on the Display. The items may be either string
constants (messages enclosed in quotes), string variables, numeric constants
(numbers), variables, or expressions involving all of the preceding items. The
items to be PRINTed may be separated by commas or semi-colons. If commas are
used, the cursor automatically advances to the next print zone before printing the
next item. If semi-colons are used, no space is inserted between the items printed on
the Display. In cases where no ambiguity would result, all punctuation can be
omitted.

Examples:

30 X :::: ::.
40 PRINT 25; "IS EQUAL TO"; X t 2
:::H~ END

80 A$= "STRING"
90 PFHNT A$; l-1$, A$; 11 11

; A~~
100 END

1:m X ::: 25
140 PRINT 25 "IS EQUAL TO" X
1 ~)0 END

180 A= 5: 8 = 10: C - 3
190 PR I NT /.\BC
200 END

3/1

TRS-80 MODEL Ill

Postive numbers are printed with a leading blank (instead of a plus sign); all
numbers are printed with a trailing blank; and no blanks are inserted before or after
strings (you can insert them with quotes as in line 90).

In line 140 no punctuation is needed; but in line 190 zero will print out because ABC

is interpreted as a single variable which has not been assigned a value yet.

230 PRINT "ZONE 1","ZONE 2","ZONE 3","ZONE 4","ZONE 1 ETC"
240 END

There are four 16-character print zones per line.

270 PRINT "ZONE 1",,"ZONE 3"
280 END

The cursor moves to the next print zone each time a comma is encountered.

300 PRINT "PRINT STATEMENT #10";
310 PRINT "PRINT STATEMENT #20"
3212) END

A trailing semi-colon overrides the cursor-return so that the next PRINT begins
where the last one left off (see line 300).

If no trailing punctuation is used with PRINT, the cursor drops down to the beginning
of the next line.

PRINT@ position, item list

Specifies exactly where printing is to begin. The@ modifier must be a number
from 0 to 1023. Refer to the Video Display worksheet, Appendix C, for the exact
position of each location 0-1023:

100 PRINT@ 550, "LOCATION 550"

RUN this to find out where location 550 is.

100 PRINT@ 550, 550;@ 650, 650

3/2

Whenever you PRINT@ on the bottom line of the Display, there is an automatic
line-feed, causing everything displayed to move up one line. To suppress this, use a
trailing semi-colon at the end of the statement.

Example:

100 PRINT@ 1000, 1000;
110GOTO 110

Use a trailing semi-colon or comma any time you want to suppress the line feed.

PRINT TAB (expression)

Moves the cursor to the specified position on the current line (modulo* 128 if you
specify TAB positions greater than 127). TAB may be used several times in a PRINT

list.

The value of expression must be between O and 255 inclusive.

Example:

10 PRINT TAB (5) "TABBED 5"; TAB(25) "TABBED 25"

No punctuation is required after a TAB modifier.

340 'FROM PRINT TAB<EXPRESSION)
3512'.1 X ::: ... ~
369 PRINT TAB(X) X; TAB<X t 2) X t 2; TAB<X t 3) X 4 3
370 END

Numerical expressions may be used to specify a TAB position. This makes TAB very
useful for graphs of mathematical functions, tables, etc. TAB cannot be used to
move the cursor to the left. If cursor is beyond the specified position, the TAB is
ignored.

*Modulo A cyclic counting system. Modulo 64 means the count goes from zero to
63 and then starts over at zero.

3/3

TRS-80 m

PRINT USING string; item list

This statement allows you to specify a format for printing string and numeric
values. It can be used in many applications such as printing report headings,
accounting reports, checks, or wherever a specific print format is required.

The PRINT USING statement uses the following format:
PRINT USING string; value

String and value may be expressed as variables or constants. This statement will
print the expression contained in the string, inserting the numeric value shown to
the right of the semicolon as specified by the field specifiers.

The following field specifiers may be used in the string:

**

$

$$

**$

(I) (I) co (I)

or [[[[

3/4

This sign specifies the position of each digit located in the
numeric value. The number of# signs you use establishes the
numeric field. If the numeric field is greater than the number
of digits in the numeric value, then the unused field positions
to the left of the number will be displayed as spaces and
those to the right of the decimal point will be displayed as
zeros.

The decimal point can be placed anywhere in the numeric
field established by the# sign. Rounding-off will take place
when digits to the right of the decimal point are suppressed.

The comma - when placed in any position between the first
digit and the decimal point- will display a comma to the left
of every third digit as required. The comma establishes an
additional position in the field.

Two asterisks placed at the beginning of the field will cause all
unused positions to the left of the decimal to be filled with
asterisks. The two asterisks will establish two more positions
in the field.

A dollar-sign will be printed ahead of the number.

Two dollar signs placed at the beginning of the field will act
as a floating dollar sign. That is, it will occupy the first position
preceding the number:

If these three signs are used at the beginning of the field, then
the vacant positions to the left of the number will be filled by
the* sign and the$ sign will again position itself in the first
position preceding the number.

Causes the number to be printed in exponential (E or D) format.
This will be displayed as a '' [''.

+ When a + sign is placed at the beginning or end of the field, it
will be printed as specified as a + for positive numbers or as
a ·- for negative numbers.

When a - sign is placed at the end of the field, it will cause a
negative sign to appear after all negative numbers and will
appear as a space for positive numbers.

% spaces% To specify a string field of more than one character,
% spaces % is used. The length of the string field will be 2
plus the number of spaces between the percent signs.

Causes the Computer to use the first string character of the current value.

Any other character that you include in the USING string will be displayed as a string
literal.

The following program will help demonstrate these format specifiers:

H!.1 INPUT II TYPE IN FOf~l"-l/'.1T'> THEN DATA"; A1;, A
20 PRINT USING A$; A
30 GOTO 10

RUN this program and try various specifiers and strings for A$ and various values
for A.

For Example:
>RUN
TYPE IN FORMAT, THEN DATA? *I=# .. #, l2. 12
1 :2. 1
TYPE IN FORMAT, THEN DATA? :ti=#.#, 1 ., :~L•

1..:3
l YPE IN FORMAT, THEN DATA? *I:##. :ti:#'> 1000. 3:~
%1000 .. 3:.3
TYPE IN FORMAT, THEN DATA?

The % sign is automatically printed if the field is not large enough to contain the
number of digits found in the numeric value. The entire number to the left of the
decimal will be displayed preceded by this sign.

>RUN
TYPE IN FORMAT, THEN DATA?##.##, 12a127
12. :t:3
TYPE IN FORMAT, THEN DATA?

Note that the number was rounded to two decimal places.

3/5

TRS-80 MODEL Ill

lYPE IN FORMAT, THEN DATA?+##.##, 12.12
+12n12
TYPE IN FORMAT, THEN DATA? "THE ANSWER IS+## .. ##", -12.12
THE ANSWER IS -12u12
lYPE IN FORMAT, THEN DATA?##.##+, 12.12
12 .. :l2+
TYPE IN FORMAT, THEN DATA? ft-4t. #:tt-+, -·12. 12
1 ·--:, ..:.. .. 12·"-
-r YPE IN FORMAT, THEN DATA? ##.ft-#-.. ' 1 ··:, ..: .. . 1 .-·,

L .

12 .. 12
TYPE IN FORMAT, THEN DATA? #=IL##-, --1:~~lf 1 .-, .a::.

:I.:;~" 12·--

TYPE IN FORMAT, THEN DATA? "*-!IE·## IN TOTAL.
*·~12 IN TOTAL ..
TYPE IN FORMAT, THEN DATA? 1>##tt. ##, 12a 1 .-, ..::
$ 12 .. 12
TYPE IN FORMAT, THEN DATA? $~'>#f~#. :tl=:t~., l ~::,. 1 ~;'.

$12. 12

II '

TYPE IN FORMAT, THEN DATA?**$###.##, 12.12
·H·*$1:2 .. 12

12.

TYPE IN FORMAT, THEN DATA?"#,###,###", 1234567
1, 2:-JL•, 570
TYPE IN FORMAT, THEN DATA?

Another way of using the PRINT USING statement is with the string field specifiers
'' ! '' and % spaces % .

Examples:

PRINT USING"!"; string

PRINT USING"% %"; string

The''!'' sign will allow only the first letter of the string to be printed. The''%
spaces%'' allows spaces + 2 characters to be printed. Again, the string and
specifier can be expressed as string variables. The following program will
demonstrate this feature:

12

10 INPUT "TYPE IN THE FORMAT, THEN THE STRING DATA"; A$, 8$
20 PRINT USING A$; 8$
30 GOTO 10

and RUN it:

TYPE IN THE FORMAT, THEN THE STRING DATA? ! ' ABCDE
A
TYPE IN THE FORMAT, THEN THE STRING DATA? '½.'½., ABCDE
AB
TYPE IN THE FORMAT, THEN THE STRING DATA? '½. '½.' ABCDE
ABCD
TYPE IN THE FORMAT, THEN THE STRING DATA?

3/6

Multiple strings or string variables can be joined together (concatenated) by these
specifiers. The''!'' sign will allow only the first letter of each string to be printed.
For example:

10 INPUT 11 TYPE IN THF~EE NAMES"; A$, B$, C$
20 PHINT
:H?l GOTO

AndRUNit. ..

>RUN

UBING
10

II I II 11 A~li, F.3$, C$. ,

TYPE IN THREE NAMES? ABC, DEF, GHI
ADG
TYPE IN THREE NAMES?

By using more than one '' ! '' sign, the first letter of each string will be printed with
spaces inserted corresponding to the spaces inserted between the ' ' ! ' ' signs. To
illustrate this feature, make the following change to the last little program:

20 PRINT USING 111

AndRUNit. ..

>RUN
TYPE IN THREE NAMES? ABC, DEF, GHI
A D G
TYPE IN THREE NAMES?

Spaces now appear between letters A, D and G to correspond with those placed
between the three '' ! '' signs.

Try changing '' ! ! ! '' to '' %% '' in line 20 and run the program.

The following program demonstrates one possible use for the PRINT USING
statement.

510 CU3
520 A$ - II HE·$##' #:1:1=####. ## DOLLARS"
530 INPUT "WHAT I<=' ,::> YOUR FIRBT NAME"; Fil>
540 INPUT 11 WHAT IS YOUR MIDDLE NAME 11

; M~;
'.5~10 INPUT "WHAT IS YOUR LAST NAME"; L$
560 INPUT "ENTER THE AMOUNT PAYABLE"; p
570 PFHNT: PRINT "PAY TO THE ORDER OF II" ,
::180 PRINT USING II ! • ! • % /,,II;

600 PfHNT: PRINT USING A$; p
620 END

F$, M$, L$

3/7

TRS-80 MODEL Ill

RUN the program. Remember, to save programming time, use the ''?' 1 sign for
PRINT. Your display should look something like this:

WHAT IS YOUR FIRST NAME? ALBERT
WHAT IS YOUR MIDDLE NAME? BARCUSSI
WHAT IS YOUR LAST NAME? COOSEY
ENTER THE AMOUNT PAYABLE? 12385"34

PAY TO THE ORDER OF Aa Bu COOSEY

*****$12,385u30 DOLLARS

If you want to use a double-precision amount without rounding off or going into
scientific notation, then simply add the double precision sign (#)after the variable
Pin Lines 560 and 600. You will then be able to use amounts up to 16 decimal
places long.

INPUT item list

Causes Computer to stop execution until you enter the specified number of values
via the keyboard. The INPUT statement may specify a list of string or numeric
variables to be input. The items in the list must be separated by commas.

100 INPUT X$, X1, 2$, 21

This statement calls for you to input a string-literal, a number, another string literal,
and another number, in that order. When the statement is encountered, the
Computer will display a

?

You may then enter the values all at once or one at a time. To enter values all at
once, separate them by commas. (If your string literal includes leading blanks,
colons, or commas, you must enclose the string in quotes.)

For example, when line 100 (above) is RUN and the Computer is waiting for your
input, you could type

JIM,50,JACK,40

The Computer will assign values as follows:

X$="JIM" X1 =50 2$="JACK" 21 =40

If you (ENTER) the values one at a time, the Computer will display a

??

. . . indicating that more data is expected. Continue entering data until all the
variables have been set, at which time the Computer will advance to the next
statement in your program.

3/8

Be sure to enter the correct type of value according to what is called for by the INPUT

statement. For example, you can't input a string-value into a numerical variable. If
you try to, the Computer will display a

?REDO
?

and give you another chance to enter the correct type of data value, starting with the
first value called for by the INPUT list. The Computer will accept numeric data for
string input.

NOTE: You cannot input an expression into a numerical value-you must input a
simple numerical constant.

Example:

:1.0 INPUT X1, Yl~;
:;::0 PHI NT X 1.., Y1 $

30 END
>RUN
? 7 + 3
?liEDO
? UZJ
? ? II TH Is I s A COMMA ' II

10 THIS IS A COMMA

It was necessary to put quotes around' 'THIS IS A COMMA.·· because the string
contained a comma.

If you type in more data elements than the INPUT statement specifies, the Computer
will display the message

?EXTRA IGNORED

and continue with normal execution of your program.

If you press (ENTEffi without typing anything, the variables will have the values they
were previously assigned.

You can also include a' 'prompting message'' in your INPUT statement. This will
make it easier to input the data correctly. The prompting message must
immediately follow ''INPUT'', must be enclosed in quotes, and must be followed by
a semi-colon.

Example:
1.0 INPUT 11 ENTER NAME, AGE"; N$, A
20 PRINT "HELLO, "; NS; ", YOU ARE AT LEAST"; A* 365; "DAYS OLD"

RUN
ENTER NAME, AGE? DO RAMEY, 31
HELLO., DO RAMEY, YOU ARE AT LEAST 11315 DAYS OLD

3/9

TRS-80 MODEL Ill

DATA item list

Lets you store data inside your program to be accessed by READ statements. The
data items will be read sequentially, starting with the first item in the first DAT A

statement, and ending with the last item in the last DAT A statement. Items in a DAT A

list may be string or numeric constants no expressions are allowed. If your string
values include colons, commas or leading blanks, you must enclose these values in
quotes.

It is important that the data types in a DATA statement match up with the variable
types in the corresponding READ statement. DAT A statements may appear anywhere
it is convenient in a program. Generally, they are placed consecutively, but this is
not required.

Examples:

10 READ N1S, N2S, N3, N4
20 DATA THIS IS ITEM ONE, THIS IS ITEM TWO, 3, 4
30 PRINT N1$, N2$, N3, N4

See READ, RESTORE.

READ item list

Instructs the Computer to read a value from a DAT A statement and assign that value
to the specified variable. The first time a READ is executed, the first value in the first
DATA statement will be used; the second time, the second value in the DATA

statement will be read. When all the items in the first DAT A statement have been
read, the next READ will use the first value in the second DATA statement; etc. (An
Out-of-Data error occurs if there are more attempts to READ than there are DATA

items.) The following program illustrates a common application for READ/DAT A

statements.

3/10

700 PRINT "NAME","AGE"
710 m::t\D N$
720 IF NS= "END" THEN PRINT "END OF LIST": END
730 REf.,.D /.\GE
740 IF AGE< 18 PRINT NS, AGE
7~50 GOTO 710
760 DATA "SMITH, JOHN", 30, "ANDERSON,TuM.", 20
770 DATA "JONES, BILL", 15, "DOE, SALLY", 21
780 DATA "COLLINS, ANDY", 17, END

The program locates and prints all the minors' names from the data supplied. Note
the use of an END string to allow READing lists of unknown length.

See DATA, RESTORE

RESTORE

Causes the next READ statement executed to start over with the first item in the first
DATA statement. This lets your program re-use the same DATA lines.

Example:

810 READ X
B20 RESTORE
830 READY
BL• 0 PR I NT X , Y
B50 DATA 50, 60
B60 END

Because of the RESTORE statement, the second READ statement starts over with the
firstDATA item.

See READ, DATA

3/11

TRS-80 MODEL Ill

LPRINT

This command or statement allows you to output information to the Line Printer.
For example, LPRINT A will list the value of A to the line printer. LPRINT can also be
used with all the options available with PRINT except PRINT@.

Examples:

LPRINT variable or expression lists the variable or expression to the line printer.

LPRINT USING prints the information to the line printer using the format specified.

LPRINT TAB will move the line printer carriage position to the right as indicated by
the TAB expression.

Example:

10 LPRINT TAB (5) "NAME" TAB (30) "ADDRESS" STRING$(63,32) "BALANCE"

will print NAME at column 5, ADDRESS at column 30, and BALANCE at column 100.

See PRINT.

PRINT #-1, item list

Prints the values of the specified variables onto cassette tape. (Recorder must be
properly connected and set in Record mode when this statement is executed.)

Example:
890 Al= -30.334: 8$ = "STRING-VALUE"
900 PRINT #-1, Al, 8$, "THAT'S ALL"
910 END

This stores the current values of Al and B$, and also the string-literal "THAT'S

ALL''. The values may be input from tape later using the INPUT #-1 statement. The
INPUT #-1 statement must be identical to the PRINT #-1 statement in terms of
number and type ofitems in the PRINT #-I/INPUT lists. See INPUT #-1.

Special Note:

The values represented in item list must not exceed 248 characters total; otherwise
all characters after the first 248 will be truncated. For example, PRINT #-1, A#,
B#, C#, D#, E#, F#, G#, H#, I#, J#, A$ will probably exceed the maximum
record length if A$ is longer than about 75 characters. If you have a lengthy list, you
should break it up into two or more PRINT# statements.

3/12

INPUT #-l, item list

Inputs the specified number of values stored on cassette and assigns them to the
specified variable names.

Example:

50 INPUT #-1,X,P$,T$

When this statement is executed, the Computer will tum on the tape machine, input
values in the order specified, then tum off the tape machine and advance to the next
statement. If a string is encountered when the INPUT list calls for a number, a bad
file data error will occur. If there are not enough data items on the tape to ''fill'' the
INPUT statement, an Out of Data error will occur.

The Input list must be identical to the Print list that created the taped
data-block (same number and type of variables in the same sequence.)

Sample Program

Use the two-line program supplied in the PRINT# description to create a short data
file. Then rewind the tape to the beginning of the data file, make all necessary
connections, and put cassette machine in Play mode. Now run the following
program.

10 INPUT #-1, Al, 8$, LS
20 PRINT Al, 8$, L$
30 IF LS= "THAT'S ALL" THEN END
40 REM PROGRAM COULD GO BACK TO LINE 10 FOR MORE DATA

This program doesn't care how long or short the data file is, so long as:
1) the file was created by successive PRINT# statements identical in form to

line 10
2) the last item in the last data triplet is' 'THAT'S ALL''.

3/13

4/Program Statements
MODEL III BASIC makes several assumptions about how to run your program. For
example:
* Variables are assumed to be single-precision (unless you use type declaration

characters- see Chapter 1, ''Variable Types'').
* A certain amount of memory is automatically set aside for strings and arrays

whether you use all of it or not.
* Execution is sequential, starting with the first statement in your program and

ending with the last.

The statements described in this chapter let you override these assumptions, to give
your programs much more versatility and power.

NOTE: All BASIC statements except INPUT and INPVT#-1 can be used in the
Immediate Mode as well as in the Execute Mode.

Statements described in this chapter:

Type
Definition

DEFINT
DEFSNG
DEFDBL
DEFSTR

Assignment &
Allocation

CLEARn
DIM
LET

Sequence of
Execution

END
STOP
GOTO
GOSUB
RETURN
ON ... GOTO
ON ... GOSUB
FOR-NEXT-STEP
ERROR
ON ERROR GOTO
RESUME
REM

Tests
(Conditional
Statements)

IF
THEN
ELSE

4/1

TRS-80 MODEL Ill

DEFINT letter range

Variables beginning with any letter in the specified range will be stored and treated
as integers, unless a type declaration character is added to the variable name. This
lets you conserve memory, since integer values take up less memory than other
numeric types. And integer arithmetic is faster than single or double precision
arithmetic. However, a variable defined as integer can only take on values between

32768 and + 32767 inclusive.

Examples:

10 DEFINTA, I, N

After line 10, all variables beginning with A, I or N will be treated as integers. For
example, A 1, AA, 13 and NN will be integer variables. However, A 1 #, AA#, 13 #
would still be double precision variables, because of the type declaration
characters, which always over-ride DEF statements.

10 DEFINT 1-N

Causes variables beginning with I, J, K, L, Mor N to be treated as integer
variables.

DEFINT may be placed anywhere in a program, but it may change the meaning of
variable references without type declaration characters. Therefore it is normally
placed at the beginning of a program.

See DEFSNG, DEFDBL, and Chapter 1.

DEFSNG letter range

Causes any variable beginning with a letter in the specified range to be stored and
treated as single precision, unless a type declaration character is added. Single
precision variables an~ constants are stored with 7 digits of precision and printed
out with 6 digits of precision. Since all numeric variables are assumed to be single
precision unless DEFined otherwise, the DEFSNG statement is primarily used to
re-define variables which have previously been defined as double precision or
integer.

Example:

100 DEFSNG I, W-Z

Causes variables beginning with the letter I or any letter W through Z to be treated
as single precision. However, 1% would still be an integer variable, and I# a double
precision variable, due to the use of type declaration characters.

See DEFINT, DEFDBL, and Chapter 1.

4/2

BASIC

DEFDBL letter range

Causes variables beginning with any letter in the specified range to be stored and
treated as double-precision, unless a type declaration character is added. Double
precision allows 17 digits of precision; 16 digits are displayed when a double
precision variable is PRINTed.

Example:

10 DEFDBL S-Z, A-E

Causes variables beginning with one of the letters S through Z or A through E to be
double precision.

DEFDBL is normally used at the beginning of a program, because it may change the
meaning of variable references without type declaration characters.

See DEFINT, DEFSNG, and Chapter 1.

DEFSTR letter range

Causes variables beginning with one of the letters in the specified range to be stored
and treated as strings, unless a type declaration character is added. If you have
CLEARed enough string storage space, each string can store up to 255 characters.

Example:

10 DEFSTR L-Z

Causes variables beginning with any letter L through Z to be string variables, unless
a type declaration character is added. After line 10 is executed, the assignment
LI = "WASHINGTON" will be valid.

See CLEAR n, Chapter 1, and Chapter 5.

4/3

TRS-80 MODEL Ill

CLEARn

When used with an argument n (n can be a constant or an expression), this statement
causes the Computer to set aside n bytes for string storage. In addition all variables
are set to zero. When the TRS,-80 is turned on, 50 bytes are automatically set aside for
strings.

The amount of string storage CLEARed must equal or exceed the greatest number of
characters stored in string variables during execution; otherwise an Out of String
Space error will occur.

Example:

10 CLEAR 1000

Makes 1000 bytes available for string storage.

By setting string storage to the exact amount needed, your program can make more
efficient use of memory. A program which uses no string variables could include a
CLEARO statement, for example. The CLEAR argument must be non-negative, or an
error will result.

DIM name (diml, dim2, . .. , dimK)

Lets you set the ''depth'' (number of elements allowed per dimension) of an array
or list of arrays. If no DIM statement is used, a depth of 11 (subscripts 0-10) is
allowed for each dimension of each array used. To create an array with more than
three dimensions, you must use DIM.

Example:

10 DIM A(5), 8(2,3), C$(20)

Sets up a one-dimension array A with subscripted elements 0-5; a two-dimension
array B with subscripted elements 0,0 to 2,3; and a one-dimension string array C$
with subscripted elements 0-20. Unless previously defined otherwise, arrays A and
B will contain single-precision values.

DIM statements may be placed anywhere in your program, and the depth specifier
may be a number or a numerical expression.

Example:

40 INPUT "NUMBER OF NAMES"; N
50 DIM NA (N,2)

To re-dimension an array, you must first use a CLEAR statement, either with or
without an argument. Otherwise an error will result.

4/4

Example Program:

1 0 AA (Li,) =~ 11 a 5
:20 DIM AA(7)
READY
>HUN
?DD ERROR IN 20
1:~EADY

See Chapter 6, ARRAYS.

LET variable = expression

May be used when assigning values to variables. Radio Shack Model Ill BASIC does
not require LET with assignment statements, but you might want to use it to ensure
compatibility with those versions of BASIC that do require it.

Examples:

100 LET A$= "A ROSE IS A ROSE"
110 LETB1=1.23
120 LETX=X-21

In each case, the variable on the left side of the equals sign is assigned the value of
the constant or expression on the right side.

END

Terminates execution normally (without a BREAK message). Some versions of
BASIC require END as the last statement in a program; with Model Ill BASIC it is
optional. END is primarily used to force execution to terminate at some point other
than the physical end of the program.

Example:

10 INPUT 81, 82
20 GOSUB 100
30 REM MORE PROGRAM LINES HERE ...
99 END : REM PROTECTIVE END-BLOCK
100 H = SQR(81*81 + 82*82)
110 RETURN

The END statement in line 99 prevents program control from ''crashing'' into the
subroutine. Now line 100 can only be accessed by a branching statement such as 20
GOSUB 100.

4/5

TRS-80 MODEL Ill

STOP

Interrupts execution and prints a BREAK IN line number message. STOP is primarily
a debugging aid. During the break in execution, you can examine or change
variable values. The command CONT can then be used to re-start execution at the
point where it left off. (If the program itself is altered during a break, CONT cannot
be used.)

Example:

l 0 X :::: RND (1 ill)
20 STOP
:m GOBUB l 0e:i0
99 END
1000 REM
1010 HETURN

Suppose we want to examine what value for Xis being passed to the subroutine
beginning at line 1000. During the break, we can examine X with PRINT X.

GOTO line number

Transfers program control to the specified line number. Used alone, GOTO line
number results in an unconditional (or automatic) branch; however, test statements
may precede the GOTO to effect a conditional branch.

Example:

200 GOTO 10

When 200 is executed, control will automatically jump back to line 10.

You can use GOTO in the Immediate Mode as an alternative to RUN. GOTO line
number causes execution to begin at the specified line number, without an
automatic CLEAR. This lets you pass values assigned in the Immediate Mode to
variables in the Execute Mode.

SeeIF,THEN,ELSE,ON ... GOTO.

4/6

GOSUB line number

Tranfers program control to the subroutine beginning at the specified line number
and stores an address to RETURN to after the subroutine is complete. When the
Computer encounters a RETURN statement in the subroutine, it will then return
control to the statement which follows GOSUB.

If you don't RETURN, the previously stored address will not be deleted from the area
of memory used for saving information, called the stack. The stack might
eventually overflow, but, even more importantly, this address might be read
incorrectly during another operation, causing a hard-to-find program error. So.
always RETURN from your subroutines. GOSUB, like GOTO may be preceded by a
test statement. See IF,THEN,ELSE,ON ... GOSUB.

Example Program:
l. 00 GOSUB 200
110 PRINT "BACK FROM THE SUBROUTINE": END
200 PRINT "EXECUTING THE SUBROUTINE"
210 RETURN
READY
>RUN
EXECUTING THE SUBROUTINE
BACK FROM THE SUBROUTINE

Control branches from line 100 to the subroutine beginning at line 200. Line 210
instructs Computer to return to the statement immediately following GOSUB, that
is, line 110.

RETURN
Ends a subroutine and returns control to statement immediately following the most
recently executed GOSUB. If RETURN is encountered without execution of a
matching GOSUB, an error will occur. See GOSUB.

4/7

TRS-80 MODEL Ill

ON n GOTO line number, ... , line number

This is a multi-way branching statement that is controlled by a test variable or
expression. The general format for ON n GOTO is:

ON expression GOTO 1st line number, 2nd line number, . .. , Kth line number

expression must be between O and 255 inclusive.

When ON ... GOTO is executed, first the expression is evaluated and the integer
portion ... INT(expression) ... is obtained. We'll refer to this integer portion as J.
The Computer counts over to the Jth element in the line-number list, and then
branches to the line number specified by that element. If there is no Jth element
(that is, if J >Kor J = 0 in the general format above), then control passes to the next
statement in the program.

If the test expression or number is less than zero, or greater than 255, an error will
occur. The line-number list may contain any number of items.

For example:

100ON Ml GOTO 150,160,170,150, 180

says' 'Evaluate MI. If integer portion of MI equals 1 then go to
line 150;

If it equals 2, then go to 160;
If it equals 3, then go to 170;
If it equals 4, then go to 150;
If it equals 5, then go to 180;
If the integer portion of MI doesn't equal any of the numbers 1 through 5,

advance to the next statement in the program.''

Sample Program

UZ.10 INPUT "ENTER A NUMBER"; X
110 ON SGN(X) + ::2 GOTO 200, 210, ::~~:;~0
200 PRINT 11 NEGATIVE 11

: END
210 PliINT II ZER0 11

: END
:~~:;~0 PRINT "POSITIVE": END

SGN(X) returns - 1 for X less than zero; 0 for X equal to zero; and + 1 for X greater
than 0. By adding 2, the expression takes on the values 1, 2, and 3, depending on
whether Xis negative, zero, or positive. Control then branches to the appropriate
line number.

4/8

ON n GOSUB line number, ... , line number

Works like ON n GOTO, except control branches to one of the subroutines specified
by the line numbers in the line-number list.

Example:

100 INPUT "CHOOSE 1 '
··::• ' OR :311; I

110 ON I GOBUB 200, :3tlJ(lJ, it00
120 END
200 PRINT 11 SUBROUTINE tH II: RETURN
~300 PHINT "SUBROUTINE ~*211 : HETUHN
L1,00 PRINT 11 SUBROUTINE #3": RETURN

The test object n may be a numerical constant, variable or expression. It must have
a non-negative value or an error will occur.

See ON n GOTO.

FOR counter == exp TO exp STEP exp
NEXT counter

Opens an iterative (repetitive) loop so that a sequence of program statements may
be executed over and over a specified number of times. The general form is
(brackets indicate optional material):

line# FOR counter-variable = initial value TO final value [STEP increment]

line# NEXT [counter-variable]

In the FOR statement, initial value, final value and increment can be constants,
variables or expressions. The first time the FOR statement is executed, these three
are evaluated and the values are saved; if the variables are changed by the loop, it
will have no effect on the loop's operation. However, the counter variable must
not be changed or the loop will not operate normally.

The FOR-NEXT-STEP loop works as follows: the first time the FOR statement is
executed, the counter is set to the' 'initial value.'' Execution proceeds until a NEXT

statement is encountered. At this point, the counter is incremented by the amount
specified in the STEP increment. (If the increment has a negative value, then the
counter is actually decremented.) If STEP increment is not used, an increment of 1 is
assumed.

4/9

TRS-80 MODEL Ill

Then the counter is compared with thefinatvalue specified in the FOR statement. If
the counter is greater than the final value, the loop is completed and execution
continues with the statement following the NEXT statement. (If increment was a
negative number, loop ends when counter is less thanfinal value.) If the counter has
not yet exceeded the final value, control passes to the first statement after the FOR

statement.

Example Programs:

10 FOR I= 10 TO 1 STEP -1
20 PRINT I;
30 NEXT
HEADY
>RUN

10 9 8 7 6 5 4 3
READY

10 FORK= 0 TO 1 STEP .3
20 PRINT I·{;
30 NEXT
READY
>RUN

(7J u3 ,.6 .9
READY

.-.

.t::. 1

After K = . 9 is incremented by . 3, K = 1 . 2. This is greater than the Ji nal value I ,
therefore loop ends without ever printingfinal value.

10 FORK= 4 TO 0
20 PRINT ~{;
30 NEXT
READY
>RUN

4
READY

No STEP is specified, so STEP 1 is assumed. After K is incremented the first time, its
value is 5. Since 5 is greater than the final value O, the loop ends.

10 J = 3: K = 8: L = 2
20 FOR I= J TOK+ 1 STEP L
30 J = 0: K = 0: L = 0
40 PRINT I;
50 NEXT
READY
>RUN

3 5 7 9
READY
)·

4/10

The variables and expressions in line 20 are evaluated once and these values
become constants for the FOR-NEXT-STEP loop. Changing the variable values later
has no effect on the loop.

FOR-NEXT loops may be' 'nested'':

10
20
30
40
5(2)

FOR I= 1 TO 3
PRINT 11 0UTER

FOR J = 1
PRINT II

NEXT '-J
60 NEXT I

RUN
OUTER LOOP

INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

READY
.>

LOOP 11

TO 2
INNER LOOP"

Note that each NEXT statement specifies the appropriate counter variable; however,
this is just a programmer's convenience to help keep track of the nesting order. The
counter variable may be omitted from the NEXT statements. But if you do use the
counter variables, you must use them in the right order; i.e., the counter variable
for the innermost loop must come first.

It is also advisable to specify the counter variable with NEXT statements when your
program allows branching to program lines outside the FOR-NEXT loop.

Another option with nested NEXT statements is to use a counter variable list.

Delete line 50 from the above program and change line 60:

60 NEXT J,I

Loops may be nested 3-deep, 4-deep, etc. The only limit is the amount of memory
available.

4/11

TRS-80 MODEL Ill

ERROR code

Lets you' 'simulate'' a specified error during program execution. The major use of
this statement is for testing an ON ERROR GOTO routine. When the ERROR code
statement is encountered, the Computer will proceed exactly as if that kind of error
had occurred. Ref er to Appendix B for a listing of error codes and their meanings.

Example Program:

:1. tZJtt.j En Hor~ 1
HEADY
>flUI\I
? NF Er· r· or· in l (1.J~!I
flE.t.1DY

1 is the error code for '' attempt to execute NEXT statement without a matching FOR

statement''.

See ON ERROR GOTO, RESUME.

ON ERROR GOTO line number

When the Computer encounters any kind of error in your program, it normally
breaks out of execution and prints an error message. With ON ERROR GOTO, you can
set up an error-trapping routine which will allow your program to ''recover'' from
an error and continue, without any break in execution. Normally you have a
particular type of error in mind when you use the ON ERROR GOTO statement. For
example, suppose your program performs some di vision operations and you have
not ruled out the possibility of division by zero. You might want to write a routine to
handle a division-by-zero error, and then use ON ERROR GOTO to branch to that
routine when such an error occurs.

Example:

10 ON ERROR GOTO 100
20 A:::: 1 / 0
90 END
100 PRINT"ERROR # "; ERR/2 + 1
110 liESUME 90

In this' 'loaded'' example, when the Computer attempts to execute line 20, a
divide-by-zero error will occur. But because of line 10, the Computer will simply
ignore line 20 and branch to the error-handling routine beginning at line I 00.

NOTE: The ON ERROR GOTO must be executed before the error occurs or it will
have no effect.

4/12

The ON ERROR GOTO statement can be disabled by executing an ON ERROR GOTO O.

If you use this inside an error-trapping routine, BASIC will handle the current error
normally.

The error handling routine must be terminated by a RESUME statement. See
RESUME.

RESUME line number

Terminates an error handling routine by specifying where normal execution is to
resume.

RESUME without a line number and RESUME o cause the Computer to return to the
statement in which the error occurred.

RESUME followed by a line number causes the Computer to branch to the specified
line number.

RESUME NEXT causes the Computer to branch to the statement following the point
at which the error occurred.

Sample Program with an Error Handling Routine

605 ON ERROR GOTO 640
610 INPUT "SEEKING SQUARE ROOT OF"; X
620 PRINT SG~R< X)
630 GOTO 610
640 PRINT "IMAGINARY ROOT:"; SQR(-X); "* I"
6~3 0 RESUME 610
660 END

RUN the program and try inputting a negative value.

You must place a RESUME statement at the end of your error trapping routine, so
that later errors may also be trapped.

4/13

TRS-80 MODEL Ill

REM
Instructs the Computer to ignore the rest of the program line. This allows you to
insert comments (REMarks) into your program for documentation. Then, when you
(or someone else) look at a listing of your program, it'll be a lot easier to figure out.
IfREM is used in a multi-statement program line, it must be the last statement.

Example Program:
710 REM** THIS REMARK INTRODUCES THE PROGRAM**
720 REM** AND POSSIBLY THE PROGRAMMER, TOO. **
730 REM** **
740 REM** THIS REMARK EXPLAINS WHAT THE **
750 REM** VARIOUS VARIABLES REPRESENT: **
760 REM** C - CIRCUMFERENCE R = RADIUS **
7/0 REM** D = DIAMETER **
7B0 1:~EM

Any alphanumeric character may be included in a REM statement, and the
maximum length is the same as that of other statements: 255 characters total.

In Model III BASIC, an apostrophe' ((SHIFT) CZJ) may be used as an abbreviation
for:REM.

'THIS, TOO IS A REMARK

true/false expression THEN action-clause

Instructs the Computer to test the following logical or relational expression. If the
expression is True, control will proceed to the ''action'' clause immediately
following the expression. If the expression is False, control will jump to the
matching ELSE statement (if there is one) or down to the next program line.

In numerical terms, if the expression has a non-zero value, it is always equivalent to
a logical True.

Examples:

l (/.3~1 IF X > :I. 27 THEN p1:~ I NT II OUT OF l~ANGE 11 ~ END

If Xis greater than 127, control will pass to the PRINT statement and then to the END
statement. But if X is not greater than 127, control will jump down to the next line

the program, skipping the PRINT and END statements.

F 0 <= X AND X <= Y THEN Y = X + 180

i Joth expressions are True then Y will be assigned the value X + 180. Otherwise
· i,ntrol will pass directly to the next program line, skipping the THEN clause.

S,~e THEN, ELSE.

4/14

THEN statement or line number

Initiates the '' action clause'' of an IF-THEN type statement. THEN is optional except
when it is required to eliminate an ambiguity, as in IF A< 0 100. THEN should be
used in IF-THEN-ELSE statements.

ELSE statement or line number

Used after IF to specify an alternative action in case the IF test fails. (When no ELSE
statement is used, control falls through to the next program line after a test fails.)

Examples:

100 INPUT A$: IF AS= "YES" THEN 300 ELSE END

In line 100, if A$ equals "YES" then the program branches to line 300. But if A$
does not equal ''YES'', program skips over to the ELSE statement which then
instructs the Computer to end execution.

20i~ IF f,. < B THEN Pl~ I NT II f.'i<l3 11 EL.BE pi:~ I NT II B<===~/.'; II

If A is less than B, the Computer prints that fact, and then proceeds down to the next
program line, skipping the ELSE statement. If A is not less than B, Computer jumps
directly to the ELSE statement and prints the specified message. Then control
passes to the next statement in the program.

200 IF A>"001 THEN B = 1/A: A= A/5: ELSE 260

If A> .001 is True, then the next two statements will be executed, assigning new
values to Band A. Then the program will drop down to the next line, skipping the
ELSE statement. But if A> .001 is False, the program jumps directly over to the
ELSE statement, which then instructs it to branch to line 260. Note that GOTO is not
required after ELSE.

IF-THEN-ELSE statements may be nested, but you have to take care to match up the
IFS and ELS Es.
810 INPUT "ENTER TWO NUMBERS"; A, B
820 IF A<= B THEN IF A< B PRINT A;: ELSE PRINT "NEITHER
";: ELSE PRINT B;
830 PRINT "IS SMALLER"
840 END

RUN the program, inputting various pairs of numbers. The program picks out and
prints the smaller of any two numbers you enter.

4/15

5/Strings
''Without string-handling capabilities, a computer is just a super-powered
calculator.'' There's an element of truth in that exaggeration; the more you use the
string capabilities of Model III BASIC, the truer the statement will seem.

In Model III BASIC any valid variable name can be used to contain string values, by
the DEFSTR statement or by adding a type declaration character to the name. And
each string can contain up to 255 characters.

Moreover, you can compare strings to alphabetize them,for example. You can take
strings apart and string them together (concatenate them). For background
material to this chapter, see Chapter 1, ''Variable Types'' and' 'Glossary'', and
Chapter4, DEFSTR.

Functions covered in this chapter:

FRE (string)
INKEY$
LEN
ASC
CHA$

LEFT$
MID$
RIGHT$
STA$

STRING$
TIME$
VAL

NOTE:Whenever string is given as a function argument, you can use a string
expression or constant.

String Space

Fifty bytes of memory are set aside automatically to store strings. If you run out of
string space, you will get an OS error and you should use the CLEAR n command to
save more space.

Note: CLEAR also sets variables to zero or null strings.

To calculate the space you'll need, multiply the amount of space each variable takes
(See v ARPTR) by the number of string variables you are using, including temporary
variables.

Temporary variables are created during the calculation of string functions.
Therefore even if you have only a few short string variables assigned in your
program, you may run out of string space if you concatenate them several times.

5/1

TRS-80 MODEL Ill

ASC (string)

Returns the ASCII code for the first character of the specified string. The
string-argument must be enclosed in parentheses. A null-string argument will cause
an error to occur.

100 PRINT ASC("A")
110 T$ = "AB": PRINT ASC (T$)

Lines 100 and 110 will print the same number.

The argument may be an expression involving string operators and functions:

200 PRINT ASC(RIGHT$(T$, 1))

Refer to the ASCII Code Table, Appendix C.

CHR$ (expression)

Performs the inverse of the ASC function: returns a one-character string whose
character has the specified ASCII, control or graphics code. The argument may be
any number from Oto 255, or any variable expression with a value in that range.
Argument must be enclosed in parentheses.

100 PRINTCHR$(35) Prints a number-sign #

Using CHR$, you can even assign quote-marks (normally used as string-delimiters)
to strings. The ASCII code for quotes '' is 34. So A$= CHR$(34) assigns the value '' to
A$.

410 A$= CHR$(34)
420 PRINT "HE SAID, "; A$; "HELLO."; AS

5/2

CHR$ may also be used to display any of the graphics or special characters. (See
Appendix C, Character Codes.)

1+60 CU3
470 FOR I= 129 TO 191
480 PRINT I; CHRS<I>,
Lt,90 NEXT
~)00 GOTO ~500

(RUN the program to see the various graphics characters.)

Codes 0-31 are display control codes. Instead ofreturning an actual display
character, they return a control character. When the control character is PRINTed,
the function is performed. For example, 23 is the code for 32 character-per-line
format; so the command, PRINT CHR$(23) converts the display format to 32
characters per line. (Hit CLEAR, execute CLS, or execute PRINT CHR$(28) to return to
64 character-per-line format.)

FRE (string)

When used with a string variable or string constant as an argument, returns the
amount of string storage space currently available. Argument must be enclosed in
parentheses. FRE causes BASIC to start searching through memory for unused string
space. If your program has done a lot of string processing, it may take several
minutes to recover all the '' scratch pad'' type memory.

500 PRINT FRE(A$), FRE(L$), FRE ("Z")

All return the same value.

The string used has no significance; it is a dummy variable. See Chapter 4,
CLEARn.

FRE(number) returns the amount of available memory (same as MEM).

5/3

TRS-80 MODEL Ill

INKEY$

Returns a one-character string determined by a keyboard check. The last key
pressed before the check is returned. If no key has been pressed, a null string
(length zero) is returned. This is a very powerful function because it lets you input
values while the Computer is executing-- without using the (ENTER) key. The
popular video games which let you fire at will, guide a moving dot through a maze,
play tennis, etc., may all be simulated using the INKEY$ function (plus a lot of other
program logic, of course).

Characters typed to an INKEY$ are not automatically displayed on the screen.

INKEY$ is often placed inside some sort of loop, so that the keyboard is scanned
repeatedly.

Example Program:

5.t.t0 CLB
550 PRINT@ 540, INKEYS: GOTO 550

RUN the program; notice that the screen remains blank until the first time you hit a
key. The last key hit remains on the screen until you hit another one. (The last key
hit is always saved. The INKEY$ function uses it until it is replaced by a new value.)

INKEY$ may be used in sequences of loops to allow the user to build up a longer
string.

Example:

590 PRINT 11 ENTER THREE CHARACTERS 11

600 A$ ·- Il\ll·'(EY$: IF A$... II II THEN 600 ELSE PRINT
610 B$ = IN~'(EY$: IF B$ -· II II THEN 610 ELSE PRINT
620 C~li -- I 1\11·-(EY~l>: IF C$:::: II II THEI\I 620 ELSE PRINT
630 D$ -· A$ + BS + C$

A$;
BS;
C$;

A three-character string D$ can now be entered via the keyboard without using the
(ENTER) key.

NOTE: The statement IF A$=" "compares A$ to the null string. There are no
spaces between the double-quotes.

5/4

LEFT$ (string, n)

Returns the first n characters of string. The arguments must be enclosed in
parentheses. string may be a string constant or expression, and n may be a numeric
expression.

Example Program:

670 A$= "TIMOTHY"
680 8$ = LEFT$ CA$, 3)
690 PH I NT BS; 11 "···THAT., B BHORT FOR " ; A~t>

LEN (string)

Returns the character length of the specified string. The string variable, expression,
or constant must be enclosed in parentheses.

7:30 A$ = 11
"

7L•0 8$:::: 11 TOM 11

750 PRINT A$, BS, BS+ BS
760 PRINT LEN(AS), LEN(8$), LEN(8$+8$)

5/5

TRS-80 MODEL m

MID$ (string,p,n)

Returns a substring of string with length n and starting at position p. The string
name, length and starting position must be enclosed in parentheses. string may be a
string constant or expression, and n and p may be numeric expressions or constants.
For example, MID$ (L$,3, 1) refers to a one-character string beginning with the third
character of L$.

If no argument is specified for the length n, the entire string beginning at position p
is returned.

Example Program:

The first three digits of a local phone number are sometimes called the ''exchange''
of the number. This program looks at a complete phone number (area code,
exchange, last four digits) and picks out the exchange of that number.

800 INPUT "AREA CODE AND NUMBERS (NO HYPHENS, PLEASE)"; PS
810 EX$= MIDS (PS, 4,3)
820 PRINT "NUMBER IS IN THE"; EX$; » EXCHANGE""

RIGHT$(string, n)

Returns the last n characters of string. string and n must be enclosed in parentheses.
string may be a string constant or variable, and n may be a numerical constant or
variable. If LEN(string) is less than or equal ton, the entire string is returned.

l (ll INPUT II ENTER f'i l..,IOF<D II ; M<!,
20 IF LEN(M$) = 0 THEN 10
:30 PR I NT II THE L../.,ST LETTER l,.,l,<~E;:
1+0 GOTO lC1

STR$ (expression)

II ; RI GHT~i (l"I~~~ 'J :I.)

Converts a numeric expression or constant to a string. The numeric expression or
constant must be enclosed in parentheses. STR$(A), for example, returns a string
equal to the character representation of the value of A. For example, if A = 5 8. 5,
then STR$(A) equals the string " 58. 5". (Note the leading blank in " 58. 5 "). While
arithmetic operations may be performed on A, only string operations and functions
may be performed on the string '' 58. 5''.

PRINT STR$(X) prints X without a trailing blank; PRINT X prints X with a trailing
blank.

5/6

Example Program:

860 A= 58n5: B = -58n5
870 PRINT STRS(A)
880 PRINT STR$(B)
890 PRINT STRS(A+B)
900 PRINT STRS(A) + STRS(B)

STRING$(n, ''character'' or number)

Returns a string composed of n character-symbols. For example,
STRING$(30,' '*'')returns''******************************''. STRING$ is
useful in creating graphs, tables, etc.

The argument n is any numerical expression with a value of from zero to 255.

character can also be a number from 0-255; in this case, it will be treated as an
ASCII, control, or graphics,code.

Example:

10 CLE/.,R 2tlJ0
20 FOR 1=128 TO 191
30 A$= STRING$(64,I)
L1,0 PF~ I NT /:1$;
'.::H2l NEXT I

5/7

TRS-80 MODEL Ill

TIME$

Returns today's date and time. Your Model III contains a built-in clock. To use this
clock, you will want to first set it to the correct date and time. To do this, you may
type and run this little program:

Ul) DEFINT A-Z
20 DIM TM(5)
30 CL= 16924
40 PRINT "INPUT 6 VALUES: MO, DA, YR, HR, MN, SS"
50 INPUT TM(0), TM(l), TM(2), TM<3>, TM(4), TM(5)
60 FOR I= 0 TO 5
70 POKE CL - I, TM(I)
80 NEXT I
90 PRINT "CLOCK IS SET"
H10 END

Once you have set the date and time with this program, you may request it any time
you want. For example, this program line:

10 PRINT TIME$

causes the Computer to print today's date and time.

If you do not set the date and time, the Computer will keep time anyway. However,
the date and time will be set at zero when you first turn on the Computer or reset it.

NOTE: The clock is turned off during cassette operations and at certain other
times. Therefore it will need to be corrected periodically.

VAL (string)

Performs the inverse of the STR$ function: returns the number represented by the
characters in a string argument. The numerical type of the result can be integer,
single precision, or double precision, as determined by the rules for the typing of
constants (See page 1/10 in this section). For example, if A$ = "12" and B$ = "34"

then VAL (A$+ "." + 8$) returns the value 12.34. VAL(A$ + "E" + 8$) returns the
value 12E34, that is 12 x 1034 .

v AL operates a little differently on mixed strings - strings whose values consist of
a number followed by non-numeric characters. In such cases, only the leading
number is used in determining v AL; the non-numeric remainder is ignored.

For example: v AL ('' I oo DOLLARS'') returns 100.

5/8

This can be a handy short-cut in examining addresses, for example.

Example Program:

940 REM "WHAT SIDE OF STREET?"
950 REM EVEN= NORTH. ODD= SOUTH
960 INPUT "ADDRESS: NUMBER AND STREET"; AD$
970 C = INT<VAL<ADS)/2) * 2
980 IF C = VAL<AD$) THEN PRINT "NORTH SIDE": GOTO 960
c/90 PRINT "SOUTH SIDE": GOTO 96(Zt

RUN the program, entering street addresses like'' 1015 SEVENTH AVE''.

If the string is non-numeric or null, v AL returns a zero.

5/9

6/Arrays
An array is simply an ordered list of values. In Mode! III BASIC these values may be
either numbers or strings, depending on how the array is defined or typed. Arrays
provide a fast and organized way of handling large amounts of data. To illustrate
the power of arrays, this chapter traces the development of an array to store
checkbook data: check numbers, dates written, and amounts for each check.

In addition, several matrix manipulation subroutines are listed at the end of this
chapter. These sequences will let you add, multiply, transpose, and perform other
operations on arrays.

Note: Throughout this chapter, zero-subscripted elements are generally ignored
for the sake of simplicity. But you should remember they are available and should
be used for the most efficient use of memory. For example, after DIM A(4), array A

contains 5 elements: A(O), A(]), A(2), A(3), A(4).

For background information on arrays, see Chapter 4, DIM, and Chapter 1,
''Arrays''.

A Check-Book Array

Consider the following table of checkbook information:
Check# Date Written

025
026
027
028
029
030

1-1-78
1-5-78
1-7-78
1-7-78
1-10-78
1-15-78

Amount

10.00
39.95
23.50

149.50
4.90

12.49

Note that every item in the table may be specified simply by reference to two
numbers: the row number and the column number. For example, (row 3, column 3)
refers to the amount 23.50. Thus the number pair (3,3) may be called the' 'subscript
address'' of the value 23. 50.

Let's set up an array, CK, to correspond to the checkbook information table. Since
the table contains 6 rows and 3 columns, array CK will need two dimensions: one for
row numbers, and one for column numbers. We can picture the array like this:

A(l, 1) = 025 A(l,2)= 1.0178 A(l.3) = 10.00

A(6,1)=030 A(6,2) = 1.1578 A(6,3) 12.49

6/1

TRS-80 MODEL Ill

Notice that the date information is recorded in the form mm .ddyy. where
mm = month number, dd = day of month, and yy = last two digits of year. Since CK

is a numeric array, we can't store the data with alpha-numeric characters
such as dashes.

Suppose we assign the appropriate values to the array elements. Unless we have
used a DIM statement, the Computer will assume that our array requires a depth of
10 for each dimension. That is, the Computer will set aside memory locations to
hold CK(7, l), CK (7,2), ... , CK(IO, I). CK(I0,2) and CK(10,3). In this case, we don't
want to set aside this much space, so we use the DIM statement at the beginning of
our program:

'~[1 DIM O~Un3)

Now let's add program steps to read the values into the array CK:

50 FOR ROW= 1 TO 6
60 FOR COL= 1 TO 3
70 READ CK(ROW,COL)
80 NEXT COL, ROW
90 DATA 025, 1-0178, 10a00
100 DATA 026, 1.0578, 39.95
110 DATA 027, 1u0778, 23.50
120 DATA 028, 1.0778, 149.50
130 DATA 029, la 1078, 4.90
140 DATA 030, 1.1578, 12.49

Now that our array is set up, we can begin taking advantage of its built-in structure.
For example, suppose we want to add up all the checks written. Add the following
lines to the pro gram:

150 FOR ROW= 1 TO 6
160 SUM= SUM+ CK(ROW,3)
170 NEXT
180 PRINT "TOTAL OF CHECKS WRITTEN";
190 PRINT USING"$$###.##"; SUM

Now let's add program steps to print out all checks that were written on a given day.

200 PRINT "SEEKING CHECKS WRITTEN ON WHAT DATE <MM.DD YY>";
210 INPUT DT
220 PRINT: PRINT "ANY CHECKS WRITTEN ARE LISTED BELOW:"
230 PRINT "CHECK#", "AMOUNT": PRINT
240 FOR ROW= 1 TO 6
250 IF CK<ROW,2) = DT THEN PRINT CK(ROW,1), CK(ROW,3)
260 NEXT

It's easy to generalize our program to handle checkbook information for all 12
months and for years other than 1978.

6/2

All we do is increase the size (or ' 'depth'') of each dimension as needed. Let's
assume our checkbook includes check numbers 001 through 300, and we want to
store the entire checkbook record. Just make these changes:

,,.0 DIM C~~(300,:3) 'SET UP A 300 BY 3 ARRAY
50 FOR ROW= 1 TO 300

and add DAT A lines for check numbers 001 through 300. You'd probably want to
pack more data onto each DAT A line than we did in the above DAT A lines.

And you'd change all the ROW counter final values:

150 FOR ROW - 1 TO 300
240 FOR ROW= 1 TO 300

Other Types of Arrays

Remember, in Model III BASIC the number of dimensions an array can have (and
the size or depth of the array), is limited only by the amount of memory available. Also
remember that string arrays can be used. For example, C$(X) would automatically
be interpreted as a string array. And if you use DEFSTR A at the beginning of your
program, any array whose name begins with A would also be a string array. One
obvious application for a string array would be to store text material for access by a
string manipulation program.

10 CL.EAR 1200
20 DIM TXT$(10)

would set up a string array capable of storing 10 lines of text. 1200 bytes were
CLEARed to allow for 10 sixty-character lines, plus 600 extra bytes for string
manipulation with other string variables.

6/3

TRS-80 MODEL Ill

Array/Matrix Manipulation Subroutines

To use this subroutine, your main program must supply values for two variables N 1
(number of rows) and N2 (number of columns). Within the subroutine, you can
assign values to the elements in the array row by row by answering the INPUT

statement.

10 FOR ROW= 1 TO N1
20 FOR COL= 1 TO N2
](ZI pi:~ I NT II ENTER DATA FOf~ II ; ROW;
40 INPUT A(ROW~COL)
~::,(lJ NEXT COL.
6(Z.1 I\IE: X T 1:~0l,,J
"/t!.1 F~ETUF~N

II II II u
n '> COi

To use this subroutine, your main program must supply values for three variables
Nl (size of dim #1), N2 (size of dim #2) and N3 (size of dim #3). Within the
subroutine, you can assign values to each element of the array using READ and
DAT A statements. You must supply I x J x K elements in the following order: row by
row for K = 1, row by row for K = 2, row by row for K = 3, and so on for each value
ofN3.

'+00 REM REG!UI HES DATA STMTBu
L~ 10 FOR ~\ -· 1 TO N3
420 FOR I ,,_ 1 TO N1
L1,30 FOR J' = 1 TO N2
i+l.~(2) READ A(I,J,~O
L.~)0 NEXT '-T' I ' ~\
'1-60 1:~ETURN

Main program supplies values for variables Nl, N2, N3. The subroutine prints the
array.

560 FOR ~\ -· 1 TO N3
570 FOR I ,,_ 1 TO N1
~:')80 FOR J - 1 TO N , ..::

590 PRINT A(I,,JdO,
600 NEXT J: PRINT
610 NEXT I : PRINT
620 NEXT ~o PRINT
630 RETURN

6/4

BASIC

Main program supplies values for variables Nl, N2, N3. Within the subroutine,
you can assign values to each element of the array using the INPUT statement.

660 FOf{ .\ _., 1 TO N3
670 PFHNT II PAGE"; I·\
680 FOR I -· 1 TO N1
690 Pi:HNT "INPUT ROW"; I
700 FOR J -· 1 TO N2
710 INPUT A(:C,,J,l·O
720 NE:XT J
7~30 NEXT 1
7-'•0 PRINT: NEXT .\
7~50 1:~ETUl:~N

Multiplication by a Single Variable: Scalar Multiplication (3 Dimensional)

780 FORK - 1 TO N3
790 FOR J = 1 TO N2
800 FOR I= 1 TO N1
810 B(I,J,K) = A<I,J,K) * X
B20 NEXT I
830 NEXT J
840 NEXT I·'{
B~:)(2'J RE::TURJ\I

Multiplies each element in MATRIX A by X and constructs matrix B

Transposition of a Matrix (2 Dimensional)

880 FOR I= 1 TO N1
890 FOR J = 1 TO N2
900 B(J,l) = A<I,J)
910 NEXT J
920 NEXT I
9:3G~ RETU!'.<N

Transposes matrix A into matrix B

6/5

TRS-80 MODEL Ill

Matrix Addition (3 Dimensional)

960 FORK - 1 TO NJ
970 FOR J = 1 TO N2
980 FOR I= 1 TO Nl
990 C (I ., J' , I·'() ::::: A (I ., J' , ~·{) + B (I ., \J ., I·'()
1000 NEXT I
101 0 NEXT \J
1020 NEXT ~'(
1 t'..1:30 RETUHN

Array Element-wise Multiplication (3 Dimensional)

1060 FORK - 1 TO NJ
1070 FOR J = 1 TO N2
1080 FOR I= 1 TO N1
1090 C<I,J,K) = A<I,J,K) * B<I,J,K>
1100 NEXT I
1110 NEXT \J
1 l 2fl.l NEXT ~<
l :L ~.'5fll RETUf~N

Multiplies each element in A times its corresponding element in B.

Matrix Multiplication (2 Dimensional)
1160 FOR I= 1 TO Ni
1170 FOR J = 1 TO N2
:I. :I. D !ZI C (I '.I •• J) ::::: (Zf

1190 FORK= 1 TO N3
1200 C(I,J) = C(I,J> + A<I,K) * B<K,J)
:1.:210 NEXT I·'(
1220 NEXT \.J
1230 NEXT I
12'1•0 RETUPN

A must be an NI by N3 matrix; B must be an N3 by N2 matrix. The resultant matrix
C will be an NI and N2 matrix. A, B, and C must be dimensioned accordingly.

6/6

7 / Arithmetic Functions
Model III BASIC offers a wide variety of intrinsic (''built-in'')functionsfor
performing arithmetic and special operations. The special-operation functions are
described in the next chapter.

All the common math functions described in this chapter return single-precision
values accurate to six decimal places. ABS, FIX and INT return values whose
precision depends on the precision of the argument.

The conversionfunctions (CINT, CDBL, etc.) return values whose precision depends
on the particular function. Trig functions use or return radians, not degrees. A
radian-degree conversion is given for each of the functions.

For all the functions, the argument must be enclosed in parentheses. The argument
may be either a numeric variable, expression or constant.

Functions described in this chapter:

ABS cos INT SGN
ATN CSNG LOG SIN
CDBL EXP RANDOM SOR
CINT FIX RND TAN

ABS(x)

Returns the ahsolute value of the argument. ABS(X) x for X greater than or equal to
zero, and ABS(X) = - X for X less than zero.

100 IF ABS(X)<1 E- 6 PRINT "TOO SMALL"

ATN(x)
Returns the arctangent (in radians) of the argument; that is, ATN(X) returns' 'the
angle whose tangent is X''. To get arctangent in degrees, multiply ATN(X) by
57.29578.

100 Y = ATN(B/C)

7/1

TRS-80 MODEL Ill

CDBL(x)
Returns a double-precision representation of the argument. The value returned will
contain 17 digits, but only the digits contained in the argument will be significant.

CDBL may be useful when you want to force an operation to be done in
double-precision, even though the operands are single precision or even integers.
For example CDBL (1%)/1% will return a fraction with 17 digits of precision.

100 FOR 1% = 1 TO 25: PRINT 1 /CDBL(I%), : NEXT

CINT(x)

Returns the largest integer not greater than the argument. For example, CINT (1.5)
returns 1; CINT(- 1. 5) returns - 2. For the CINT function, the argument must be in
the range - 32768 to + 32767. The result is stored internally as a two-byte integer.

CINT might be used to speed up an operation involving single or double-precision
operands without losing the precision of the operands (assuming you're only
interested in an integer result).

100 K% = CINT(X#) + CINT(Y #)

COS(x)

Returns the cosine of the argument (argument must be in radians). To obtain the
cosine of x when xis in degrees, use COS(X* .01745329).

100 Y = COS(X + 3.3)

CSNG(x)
Returns a single-precision representation of the argument. When the argument is a
double-precision value, it is returned as six significant digits with' '4/5 rounding''
in the least significant digit. So CSNG(.6666666666666667) is returned as .666667;
CSNG(.3333333333333333) is returned as .333333.

100 PRINT CSNG (A#+ B#)

7/2

BASIC

EXP(x)

Returns the' 'natural exponential'' ofx, that is eX. This is the inverse of the LOG
function, so X = EXP(LOG(X)).

100 PRINT EXP(-X)

FIX(x)

Returns a truncated representation of the argument. All digits to the right of the
decimal point are simply chopped off, so the resultant value is an integer. For
non-negative X, FIX(X) = INT(X). For negative values ofx, FIX(X) = INT(X) + 1. For
example, FIX(2.2) returns 2, and FIX(- 2.2) returns - 2.

100 Y ABS(A - FIX(A))

This statement gives Y the value of the fractional portion of A.

INT(x)

Returns an integer representation of the argument, using the largest whole number
that is not greater than the argument. Argument is not limited to the range - 32768
to + 32767. The result is stored internally as a single-precision whole number.
INT(2.5) returns 2; INT(- 2.5) returns - 3; and INT(1000101.23) returns
1000101.

100 Z = INT(A *100 + .5)/100

Gives z the value of A rounded to two decimal places (for non-negative A).

LOG(x)

Returns the natural logarithm of the argument, that is, loge (argument). This is the
inverse of the EXP function, so X = LOG (EXP (X)). To find the logarithm of a number
to another base b, use the formula LOGb (X) = LOGe(x)/LOGe(b).For example,
LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

100 PRINT LOG(3.3*X)

7/3

TRS-80 MODEL Ill

RANDOM

RANDOM is actually a complete statement rather than a function. It reseeds the
random number generator. If a program uses the RND function, you may want to put
RANDOM at the beginning of the program. This will ensure that you get an
unpredictable sequence of pseudo-random numbers each time you turn on the
Computer, load the program, and run it.

:I. C~1 i:~f.:iNDOM
2e.1 PF~ I NT F~I\ID (,(.1) rs

~.'3(lJ GOTO 2!Zt 7 l)Q LINE :1.0 JUST ONCE

RND(x)

Generates a pseudo-random number using the current pseudo-random '' seed
number'' (generated internally and not accessible to user). RND may be used to
produce random numbers between O and 1, or random integers greater than 0,
depending on the argument.

RND(O) returns a single-precision value between O and 1. RND(integer) returns an
integer between 1 and integer inclusive (integer must be positive and less than
32768). For example, RND(55) returns a pseudo-random integer greater than zero
and less than 56. RND(55 .5) returns a number in the same range, because RND uses
the INTeger value of the argument.

100 X = RND(2): ON X GOTO 200,300

SGN(x)

The "sign" function: returns - 1 for X negative, 0 for x zero, and + 1 for x
positive.

100 ON SGN(X) + 2 GOTO 200,300,400

7/4

BASIC

SIN(x)

Returns the sine of the argument (argument must be in radians). To obtain the sine
ofx when Xis in degrees, use SIN(X* .01745329).

100 PRINT SIN(A*B - B)

SQR(x)

Returns the square root of the argument. SQR(X) is the same as X [(112), only faster.

100Y = SQR(X[2 - H[2)

TAN(x)

Returns the tangent of the argument (argument must be in radians). To obtain the
tangentofx when xis in degrees, use TAN(X* .01745329).

100 Z=TAN(2*A)

NOTE: A great many other functions may be created using the above functions.
See Appendix E, '' Derived Functions''.

7/5

BASIC

8/Special Features
Model III BASIC offers some unusual functions and operations that deserve special
highlighting. Some may seem highly specialized; as you learn more about
programming and begin to experiment with machine-language routines, they will
take on more significance. Other functions in the chapter are of obvious benefit and
will be used often (for example, the graphics functions).

Functions, statements and operators described in this chapter:

Graphics:

SET
RESET
CLS
POINT

SET(x,y)

Error-Routine
Functions:

ERL
ERR

Other Functions
and Statements:

INP
MEM

OUT
PEEK
POKE
POS
USR
VARPTR

Tums on the graphics block at the location specified by the coordinates x and y. For
graphics purposes, the Display is divided up into a 128 (horizontal) by 48 (vertical)
grid. Thex-coordinates are numbered from left to right, 0 to 127. They-coordinates
are numbered from top to bottom, 0 to 47. Therefore the point at (0,0) is in the
extreme upper left of the Display, while the point at (127 ,4 7) is in the extreme
lower right comer. See the Video Display Worksheet in the Appendix.

The argumentsx andy may be numeric constants, variables or expressions. They
need not be integer values, because SET(x,y) uses the INTegerportion of x andy. SET
(x,y) is valid for:

0< =x<128
O<=y<48

8/1

TRS-80 MODEL Ill

Examples:

100 SET (RND(128)--1,RND(48) -1)

Lights up a random point on the Display.

100 INPUTX,Y: SET (X,Y)

RUN to see where the blocks are.

RESET(x,y)

Tums off a graphics block at the location specified by the coordinates x and y. This
function has the same limits and parameters as SET(x,y).

200 RESET (X,3)

CLS

''Clear-Screen'' turns off all the graphics blocks on the Display and moves the
cursor to the upper left comer. This wipes out alphanumeric characters as well as
graphics blocks. CLS is very useful whenever you want to present an attractive
Display output.

10 CL.S
20 SET(RND(128)-1, RND(48)-1)
30 GOTO 2lt)

POINT(x,y)

Tests whether the specified graphics block is ''on'' or ''off''. If the block is ''on''
(that is, if it has been SET), then POINT returns a binary True (- I in Model III
BASIC). If the block is ''off'', POINT returns a binary False (0 in Model III BASIC). Typically,
the POINT test is put inside an IF-THEN statement.

100 SET (50, 28): IF POINT (50,28) THEN PRINT "ON" ELSE PRINT "OFF"

This line will always print the message, "ON", because POINT(50,28) will return a
binary True, so that execution proceeds to the THEN clause. If the test failed, POINT

would return a binary False, causing execution to jump to the ELSE statement.

8/2

ERL
Returns the line number in which an error has occurred. This function is primarily
used inside an error-handling routine accessed by an ON ERROR GOTO statement. If
no error has occurred when ERL is called, line number 0 is returned. However, if an
error has occurred since power-up, ERL returns the line number in which the error
occurred. If error occurred in direct mode, 65535 is returned (largest number
representable in two bytes).

Example Program using ERL

10 CLEAR 10
20 ON ERROR GOTO 1000
30 INPUT "ENTER YOU!=< MFt::;t::;i<\GE" :; M~;
40 INPUT "NOW ENTER A NUMBER"; N
50 Z :::: 1 /N
60 PRINT "INPUT VALUES OKAY--TRY AGAIN TO CAUSE AN ERROR"
70 GOTO 30
1000 IF ERL=30 AND (ERR/2 + 1 - 14) THEN 1040
1010 IF ERL=40 AND (ERR/2 + 1 - 6) THEN 1050
1020 IF ERL=50 AND (ERR/2 + 1 - 11) THEN 1060
1030 ON ERROR GOTO 0: RESUME
1040 PRINT "MESSAGE TOO LONG--10 LETTERS MAXIMUM": RESUME
1050 PRINT "NUMBER TOO LARGE": RESUME
1060 PRINT "DIVISION BY ZERO IN LINE 50--ENTER NON-ZERO NUMBER"
1070 RESUME '+0

RUN the program. Try entering a long message; try entering zero when the program
asks for a number. Note that ERL is used in line 1000 to determine where the error
occurred so that appropriate action may be taken.

ERR/2+1

Similar to ERL, except ERR returns a value related to the code of the error rather
than the line in which the error occurred. It is commonly used inside an error
handling routine accessed by an ON ERROR GOTO statement. See Appendix B,
'' Error Codes. ' '

ERR/2 + 1 = true error code
(true error code - 1)*2 = ERR

Sample Program

See ERL.

8/3

TRS-80 MODEL Ill

INP(port)

Returns a byte-value from the specified port. There are 256 ports, numbered 0-255.
For example

100 PRINT INP(S0)

inputs a byte from port 50 and prints the decimal value of the byte.

You do not need to access the Z-80 ports to make full use of the TRS-80.

MEM

Returns the number of unused and unprotected bytes in memory. This function may
be used in the Immediate Mode to see how much space a resident program takes up;
or it may be used inside the program to avert OM (Out of Memory) errors by
allocating less string space, DIMensioning smaller array sizes, etc. MEM requires no
argument.

Example:

100 IFMEM<80THEN900

Enter the command PRINT MEM (in the Immediate Mode) to find out the amount of
memory not being used to store programs, variables, strings, stack, or reserved for
object-files.

8/4

OUT port, value

Outputs a byte value to the specified port. OUT is not a function but a statement
complete in itself. It requires two arguments separated by a comma (no
parenthesis): the port destination and the byte value to be sent.
port and value are in the range o to 255.

PEEK(address)

Returns the value stored at the specified byte address (in decimal form). To use this
function, you'll need to refer to two sections of the Appendix: the Memory Map (so
you'll know where to PEEK) and the Table of Function ASCII and Graphics Codes
(so you'll know what the values represent).

If you're using PEEK to examine object files, you'll also need a microprocessor
instruction set manual (one is included with the TRS-80 Editor/ Assembler
Instruction Manual).

PEEK is valuable for linking machine language routines with Model III BASIC

programs. The machine language routine can store information in a certain memory
location, and PEEK may be used inside your BASIC program to retrieve the
information. For example,

A= PEEK (17999)

returns the value stored at location 17999 and assigns that value to the variable A.

Peek may also be used to retrieve information stored with a POKE statement. Using
PEEK and POKE allows you to set up very compact, byte-oriented storage systems.
Refer to the Memory Map in the Appendix to determine the appropriate locations
for this type of storage. See POKE, USR.

POKE address, value

Loads a value into a specified memory location. POKE is not a function but a
statement complete in itself. It requires two arguments: a byte address (in decimal
form) and a value. The value must be between O and 255 inclusive. Refer to the
Memory Map in the Appendix to see which addresses you'd like to POKE.

To POKE (or PEEK) an address above 32767, use the following formula: - 1 *
(65536-desired address) = POKE OR PEEK address. For example, to POKE into
address 32769, use POKE -32767, value.

8/5

TRS-80 MODEL Ill

Since the Video Display is memory-mapped, you can output to the Display directly
by POKEing ASCII data into Video RAM. Video RAM is from 15360 to 16383.
Example:

:I.VJ CI....G
20 FORM= 15360 TO 16383
~:30 POl·<E M, :I. 9 :I.
'1•0 NEXT M
'.5G1 GOTO '.:3(/J

RUN the program to see how fast the screen is' 'painted'' white.

Since POKE can be used to store information anywhere in memory, it is very
important when we do our graphics to stay in the range for display locations. If we
POKE outside this range, we may store the byte in a critical place. We could be
POKEing into our program, or even in worse places like the stack. Indiscriminate
POKEing can be disastrous. You might have to reset or power off and start over
again. Unless you know where you are POKEing - don't.

See PEEK, USR, SET, and CHR$ for background material. Also see the Owners
Section for examples on special uses of POKE.

POS(x)

Returns a number from Oto 63 indicating the current cursor position on the Display.
Requires a '' dummy argument'' (any numeric expression).

100 PRINTTAB(40); POS(O)

prints 40 at position 40. (Note that a blank is inserted before the' '4'' to
accommodate the sign; therefore the'' 4'' is actually at position 41.) The ''0'' in
''POS(O)'' is the dummy argument.

8/6

VSR(x)
This function lets you call a machine-language subroutine and then continue
execution of your BASIC program.

''Machine language'' is the low-level language used internally by your Computer.
It consists of Z-80 microprocessor instructions. Machine-language subroutines are
useful for special applications (things you can't do in BASIC) and simply because
they can do things very fast (like white-out the Display).

Writing such routines requires familiarity with assembly-language programming
and with the Z-80 instruction set. For more information on this subject, see the
Radio Shack book, TRS-80Assembly-Language Programming, by William Barden,
Jr., and the instruction manual for Radio Shack's EDITOR-ASSEMBLER (26-2002).

Getting the USR routine into memory

1. You should first reserve the area in high memory where the routine will be
located. This is done immediately after power-up by answering the MEMORY

SIZE? question with the address preceding the start address of your USR

routine. For example, if your routine starts at 32700, then type 32699 in
response to MEMORY SIZE?.

2. Then load the routine into memory.
A. If it is stored on tape in the SYSTEM format (created with

EDITOR-ASSEMBLER), you must load it via the SYSTEM command, as
described in Chapter 2. After the tape has loaded press (BREAK) to return to
the BASIC immediate mode.

B. If it is a short routine, you may simply want to POKE it into high memory.

Telling BASIC where the USR routine starts

Before you can make the USR call, you have to tell BASIC the entry address to the
routine. Simply POKE the two-byte address into memory locations 16526-16527:
least significant byte (LSB) into 16526, most significant byte (MSB) into 16527.

For example, if the entry point is at 32700:

32700 decimal = 7FBC hexadecimal
LSB = BC hexadecimal = 188 decimal
MSB = 7F hexadecimal = 127 decimal

So use the statements:
POKE 16526, 188

POKE 16527, 127

to tell BASIC that the USR routine entry is at 32700.

8/7

TRS-80 MODEL Ill

Making the USR call

At the point in your BASIC program where you want to call the subroutine, insert a
statement like

X USR(N)

where N can be an expression and must have a value between 32768 and
+ 32767 inclusive. This argument, N, can be used to pass a value to your routine
(see below) or you can simply consider it a dummy argument and not use it at all.

When BASIC encounters your X = USR(N) statement, it will branch to the address
stored at 16526-16527. At the point in your USR routine where you want to return
to the BASIC program, insert a simple RET instruction- unless you want to return a
value to BASIC, in which case, see below.

Passing an argument to the USR routine

If you want to pass the USR(N) argument to your routine, then include the following
CALL instruction at the beginning of your USR routine.:

CALLOA?FH
This loads the argument N into the HL register pair as a two-byte signed integer.

Returning an argument from the USR routine

To return an integer value to the USR(N) function, load the value (a two-byte signed
integer) into HL and place the following jump instruction at the end of your routine:

JP 0A9AH

Control will pass back to your program, and the integer in HL will replace USR(N).

For example, if the call was
X= USR(N)

Then x will be given the value in HL.

USR routines are automatically allocated up to 8 stack levels or 16 bytes (a high and
low memory byte for each stack level). If you need more stack space, you can save
the BASIC stack pointer and set up your own stack. See SYSTEM, PEEK, and POKE.

Also see the Technical Information Chapter in the Owners Section.

8/8

V ARPTR (variable name)

Returns an address-value which will help you locate where the variable name and
its value are stored in memory. If the variable you specify has not been assigned a
value, an FC error will occur when this function is called.

IfVARPTR(integer variable) returns address K:
Address K contains the least significant byte (LSB) of 2-byte integer.
Address K + 1 contains the most significant byte (MSB) of integer.

You can display these bytes (two's complement decimal representation) by
executing a PRINT PEEK (K) and a PRINT PEEK (K + I).

IfVARPTR(single precision variable) returns address K:
(K)* = LSB of value
(K + 1) = Next most significant byte (Next MSB)
(K + 2) = MSB with hidden (implied) leading one. Most significant

bit is the sign of the number
(K + 3) = exponent of value excess 128 (128 is added to the exponent).

If v ARPTR(double precision variable) returns K:
(K) = LSB of value
(K + 1) = NextMSB
(K + ...) = NextMSB
(K + 6) = MSB with hidden (implied) leading one. Most significant

bit is the sign of the number.
(K + 7) = exponent of value excess 128 (128 is added to the exponent).

For single and double precision values, the number is stored in normalized
exponential form, so that a decimal is assumed before the MSB. 128 is added to the
exponent. Furthermore, the high bit of MSB is used as a sign bit. It is set to O if the
number is positive or to 1 if the number is negative. See examples below.

You can display these bytes by executing the appropriate PRINT PEEK(x) where x

the address you want displayed. Remember, the result will be the decimal
representation of byte, with bit 7 (MSB) used as a sign bit. The number will be in
normalized exponential form with the decimal assumed before the MSB. 128 is
added to the exponent,

IfVARPTR(string variable) returns K:
K = length of string
(K + 1) = LSB of string value starting address
(K + 2) = MSB of string value starting address
* (K) signifies "contents of address K"

The address will probably be in high RAM where s.tring storage space has been set
aside. But, if your string variable is a constant (a string literal), then it will point to
the area of memory where the program line with the constant is stored, in the
program buffer area. Thus, program statements like A$ "HELLO" do not use string
storage space.

8/9

TRS-80 MODEL Ill

For all of the above variables, addresses (K-1) and (K 2) will store the TRS-80
Character Code for the variable name. Address (K-3) will contain a descriptor code
that tells the Computer what the variable type is. Integer is 02; single precision is
04; double precision is 08; and string is 03.

v ARPTR(array variable) will return the address for the first byte of that element in
the array. The element will consist of 2 bytes if it is an integer array; 3 bytes if it is a
string array; 4 bytes if it is a single precision array; and 8 bytes if it is a double
precision array.

The first element in the array is preceded by:
1. A sequence of two bytes per dimension, each two-byte pair indicating the

' 'depth'' of each respective dimension.
2. A single byte indicating the total number of dimensions in the array.
3. A two-byte pair indicating the total number of elements in the array.
4. A two-byte pair containing the ASCII-coded array name.
5. A one-byte type-descriptor (02 = Integer, 03 = String, 04 = Single-Precision,

08 = Double-Precision).

Item (1) immediately precedes the first element, Item (2) precedes Item (1),
and soon.

The elements of the array are stored sequentially with the first dimension-subscripts
varying' 'fastest'', then the second, etc.

Examples:

A! = 2 will be stored as follows
2 = 10 Binary, represented as .1E2 = . 1 x 22

So exponent of A is 128 + 2 130 (called excess 128)
MSB of A is 10000000;
however, the high bit is changed to zero since the value is positive (called hidden or
implied leading one).
So A! is stored as

Exponent (K + 3)
130

A!= - .5 will be stored as
Exponent (K + 3)

128

A!= 7 will be stored as
Exponent (K + 3)

131

A!= -7:
Exponent (K + 3)

131

MSB (K+2)
0

MSB (K+2)
128

MSB (K+2)
96

MSB (K+2)
224

Next MSB (K + 1)
0

Next MSB (K + 1)
0

Next MSB (K + 1)
0

Next MSB (K + 1)
0

LSB (K)
0

LSB (K)
0

LSB (K)
0

LSB (K)
0

Zero is simply stored as a zero-exponent. The other bytes are insignificant.

8/10

BASIC

9/Editing
You have probably found it is very time consuming to retype long program lines,
simply because of a typo, or maybe just to make a small change.

Model III editing features eliminate much of this extra work. Infact, it's so easy to
alter program lines, you'll probably want to experiment with multi-statement lines,
complex expressions, etc.

Commands, subcommands, and specialfunction keys described in this chapter:

EDIT

CENiEID
n(SPACEBAR)
n8
(SHIFT)G)

EDIT line number

n([)
n([)
n([)c
n(K)c

This command puts you in the Edit Mode. You must specify which line you wish to
edit, in one of two ways:

EDIT line-number

or

EDIT.

Lets you edit the specified line.
If line number is not in use,
an FC error occurs

Lets you edit the current pro
gram line - last line entered or
altered or in which an error has
occurred.

For example, type in and (ENTEID the following line:

100FORI = ITO10STEP.5:PRINTl,I [2,1 [3:NEXT

This line will be used in exercising all the Edit subcommands described below.

Now type EDIT 100 and hit (ENTER). The Computer will display:

10011

You are now in the Edit Mode and may begin editing line 100.

9/1

TRS-80 MODEL Ill

NOTE: EDITing a program line automatically clears all variable values and
eliminates pending FOR/NEXT and GOSUB operations. If BASIC encounters a syntax
error during program execution, it will automatically put you in the EDIT mode.
Before EDITing the line, you may want to examine current variable values. In this
case, you must type Q as your first EDIT command. This will return you to the
command mode, where you may examine variable values. Any other EDIT
command (typing E, pressing ENTER, etc.) will clearout all variables.

(ENTER) key

Hitting (ENTER) while in the Edit Mode causes the Computer to record all the
changes you've made (if any) in the current line, and returns you to the Command
Mode.

n(SPACEBAR)
In the Edit Mode, hitting the Space-bar moves the cursor over one space to the right
and displays any character stored in the preceding position. For example, using line
100 entered above, put the Computer in the Edit Mode so the Display shows:

1001111

Now hit the Space-Bar. The cursor will move over one space, and the first character
of the program line will be displayed. If this character was a blank, then a blank will
be displayed. Hit the Space-Bar until you reach the first non-blank character:

100F11111

is displayed. To move over more than one space at a time, hit the desired number of
spaces first, and then hit the space-bar. For example, type 5 and hit Space-bar, and
the display will show something like this (may vary depending on how many blanks
you inse11ed in the line):

100FOR 1=11111

Now type 8 and hit the Space-bar. The cursor will move over 8 spaces to the right,
and 8 more characters will be displayed.

9/2

n 8
Moves the cursor to the left by n spaces. If no number n is specified, the cursor
moves back one space. When the cursor moves to the left, all characters in its
''path'' are erased from the display, but they are not deleted from the program
line. Using this in conjunction with Dor Kor c can give misleading Video Displays
of your program lines. So, be careful using it! For example, assuming you've used
nSpace-Bar so that the Display shows:

100 FOR I = 1 TO 10111

type 8 and hit the 8key. The display will show something like this:

100FOR 1=11111

(SHIFT) CD

(will vary depending on number of blanks in
your line 100)

Hitting SHIFT and(I)keys together effects an escape from any of the Insert
subcommands: X, I and H. After escaping from an Insert subcommand, you '11 still
be in the Edit Mode, and the cursor will remain in its current position. (Hitting
(ENTER) is another way to exit these Insert subcommands).

L (List Line)

When the Computer is in the Edit Mode, and is not currently executing one of the
subcommands below, hitting L causes the remainder of the program line to be
displayed. The cursor drops down to the next line of the Display, reprints the
current line number, and moves to the first position of the line. For example, when
the Display shows

10011111

hitL (without hitting (ENTER) key) and line 100 will be displayed:

100 FOR I= 1 TO 10 STEP .5: PRINT I, I [2, I [3: NEXT
10011111

This lets you look at the line in its current form while you' re doing the editing.

9/3

TRS-80 MODEL Ill

X (Extend Line)

Causes the rest of the current line to be displayed, moves cursor to end ofline, and -
puts Computer in the Insert subcommand mode so you can add material to the end
of the line. For example, using line 100, when the Display shows

10011

hit X (without hitting (ENTER))and the entire line will be displayed; notice that the
cursor now follows the last character on the line:

100 FOR I= 1 TO 10STEP .5: PRINTI, I [2, I [3: NEXT ■

We can now add another statement to the line, or delete material from the line by
using the Q0 key. For example, type :PRINT' 'DONE'' at the end of the line. Now hit

(ENTER). If you now type LIST 100, the Display should show something like this:

100 FOR 1 = 1 TO 10 STEP .5: PRINT 1, 1 [2, 1 [3:NEXT:PRINT "DONE"

I (Insert)

Allows you to insert material beginning at the current cursor position on the line.
(Hitting CI) will actually delete material from the line in this mode.) For example,
type and ((NTER) the EDIT too command, then use the Space Bar to move over to the
decimal point in line 100. The Display will show:

100 FOR I= 1 TO 10 STEP .11

Suppose you want to change the increment from . 5 to . 25. Hit the I key (don't hit
(ENTER)) and the Computer will now let you insert material at the current position.
Now hit 2 so the Display shows:

100 FOR I= 1 TO 10 STEP .211

You've made the necessary change, so hit (SHIFT) CD to escape from the Insert
Subcommand. Now hit L key to display remainder of line and move cursor back to
the beginning of the line:

100 FOR I= 1 TO 10 STEP .25: PRINT I, I [2, I [3: NEXT: PRINT "DONE"
10011111

You can also exit the Insert subcommand and save all changes by hitting (ENTER) .
This will return you to Command mode.

9/4

A (Cancel and Start Again)

Moves the cursor back to the beginning of the program line and cancels editing
changes already made. For example, if you have added, deleted, or changed
something in a line, and you wish to go back to the beginning of the line and cancel
the changes already made: first hit SHIFf(l) (to escape from any subcommand you
may be executing); then hit A. (The cursor will drop down to the next line, display
the line number and move to the first program character.)

E(Exit)

Causes Computer to end editing and save all changes made. You must be in Edit
Mode, not executing any subcommand, when you hit E to end editing.

Q(Quit)

Tells Computer to end editing and cancel all changes made in the current editing
session. If you've decided not to change the line, type Q to cancel changes and leave
Edit Mode.

H(Hack)

Tells Computer to delete remainder of line and lets you insert material at the current
cursor position. Hitting CED will actually delete a character from the line in this
mode. For example, using line 100 listed above, enter the Edit Mode and space
over to the last statement, PRINT' 'DONE''. Suppose you wish to delete this statement
and insert an END statement. Display will show:

100FOR I= 1 TO 10STEP .25: PRINT!, I [2, I [3: NEXT:■

Now type Hand then type END. Hit (ENTER) key. List the line:

100 FOR I= 1 TO 10STEP .25: PRINT I, I [2, I [3: NEXT: END

should be displayed.

9/5

TRS-80 MODEL m

nD (Delete)

Tells Computer to delete the specified number n characters to the right of the
cursor. The deleted characters will be enclosed in exclamation marks to show you
which characters were affected. For example, using line 100, space over to the
PRINT command statement:

100 FOR I= 1 TO 10STEP .25 :11

Now type 19D. This tells the Computer to delete 19 characters to the right of the
cursor. The display should show something like this:

100 FOR I= 1 TO 10STEP .25: !PRINT I, I 12, I (3 :!11

When you list the complete line, you'll see that the PRINT statement has been
deleted.

nC (Change)

Tells the Computer to let you change the specified number of characters beginning
at the current cursor position. If you type c without a preceding number, the
Computer assumes you want to change one character. When you have entered n
number of characters, the Computer returns you to the Edit Mode (so you' re not in
the nC Subcommand). For example, using line 100, suppose you want to change
the final value of the FOR-NEXT loop, from'' 10'' to'' 15''. In the Edit Mode, space
over to just before the "0" in " 10" .

100 FOR I= 1 TO 111111

Now type c. Computer will assume you want to change just one character. Type 5,
then hit L. When you list the line, you'll see that the change has been made.

100 FOR 1 = 1 TO 15 STEP .25: NEXT: END

would be the current line if you've followed the editing sequence in this chapter.

The 8 does not work as a backspace under the c command in Edit mode. Instead, it
replaces the character you want to change with a backspace. So it should not be
used. If you make a mistake while typing in a change, Edit the line again to correct
it, instead ofusing 8.

9/6

nSc (Search)

Tells the Computer to search for the nth occurrence of the character c, and move the
cursor to that position. If you don't specify a value for n, the Computer will search
for the first occurrence of the specified character. If character c is not found, cursor
goes to the end of the line. Note: The Computer only searches through characters to
the right of the cursor.

For example, using the current form of line 100, type EDIT 100 ((ENTER)) and then
hit 2S: . This tells the Computer to search for the second occurrence of the colon
character. Display should show:

100 FOR I= 1 TO 15STEP .25: NEXT■

You may now execute one of the subcommands beginning at the current cursor
position. For example, suppose you want to add the counter variable after the NEXT
statement. Type I to enter the Insert subcommand, then type the variable name, I.
That's all you want to insert, so hit SHIFT(I)to escape from the Insert subcommand.
The next time you list the line, it should appear as:

100 FOR I= 1 TO 15 STEP .25: NEXT I: END

nKc (Kill)

Tells the Computer to delete all characters up to the nth occurrence of character c,
and move the cursor to that position. For example, using the current version of line
100, suppose we want to delete the entire line up to the END statement. Type EDIT
100 ((ENTER)) , and then type 2K:. This tells the Computer to delete all characters up
to the 2nd occurrence of the colon. Display should show:

100 !FOR I= 1 TO 15 STEP .25: NEXT 1!11

The second colon still needs to be deleted, so type D. The Display will now show:

100 !FOR I= 1 TO 15 STEP .25: NEXT I!!:! ■

Now hit (ENTER) and type LIST 100 ((ENTER)).

Line 100 should look something like this:

100END

9/7

A I Model III Summary
Special Characters and Abbreviations

Command
Mode Function

Return carriage and interpret command

Cursor backspace and delete last character typed

Cursor to beginning of line; erase line

Linefeed

Statement delimiter; use between statements
on same logical line

8 Move cursor to next tab stop. Tab stops are at
positions o, 8, 16, 24, 32, 48, and 56.

(SHIFT)8 Convert display to 32 characters per line

(CLEAR) Clear Display and convert to 64 characters per line

Execute
Mode Function

(SHIFT)@ Pause in execution; freeze display during LIST

(BREAK) Stop execution

(ENTER) Interpret data entered from Keyboard with
INPUT statement

Abbreviations Function

? Use in place of PRINT.

Use in place of :REM

'' current line''; use in place of line number with
LIST' EDIT' etc.

APPENDIX

To output a control character, press (SHIFT) then (D; while holding down both keys,
press the key for which a control character is desired. For example, to key a control
-Zpress:

A/1

TRS-80 MODEL Ill

Type Declaration Characters

Character Type

$ String

% Integer

Single-Precision

Double-Precision

D Double-Precision
(exponential notation)

E Single-Precision
(exponential notation)

Arithmetic Operators

+

*

add

subtract

multiply

divide

Examples

A$,ZZ$

A1%,SUM%

B!, NI!

A#, 1/3#

1.234567890-12

1 .23456E + 30

[exponentiate (e.g., 2 [3 = 8) Press (I) to generate''[''.

String Operator

+ concatenate (string together)

Relational Operators

Symbol

<
>
=
<=or=<
>=or=>
<>or><

A/2

in numeric expressions

is less than
is greater than
is equal to
is less than or equal to
is greater than or equal to
does not equal

"2" + "2" = "22"

in string expressions

precedes
follows
equals
precedes or equals
follows or equals
does not equal

Section 2
Page

1/13

1/13

1/12

1/12

1/12

1/12

Section 2
Page

1/19

1/19

1/19

1/19

1/19

Section 2
Page

1122

Section 2
Page

1/23
1/23
1/23
1/23
1/23
1/23

Order of Operations

[or ♦ (Exponentiation) Press (I) to enter this character.

- (Negation)

* ,I

+ -'
Relational operators

NOT

AND

OR

Precedence order is from left to right for operators on the same level

Commands

Command/Function

AUTO mm, nn

CLEAR

Tum on automatic line
numbering beginning
with mm, using
increment of nn.

Set numeric variables
to zero, strings to null.

CLEARn

CLOAD

Same as CLEAR but also
sets aside n bytes for strings.

Load a BASIC

program from tape

CLOAD?

CONT

Verifies BASIC

program on tape
to one in memory

Continue after BREAK or
STOP in execution.

Examples

AUTO
AUTO10
AUTO5,5
AUTO.,10

CLEAR

CLEAR500
CLEARMEM/4

CLOAD"A"

CLOAD?"A"

CONT

APPENDIX

Section 2
Page

1/26

1/26

1/26

1/26

1/26

1/26

1/26

1/26

1/26

Section 2
Page

2/1

2/2

2/2

2/3

2/3

A/3

TRS-80 MODEL Ill

CSAVE

Save a BASIC CSAVE"A" 2/3
program on tape

DELETE mm-nn
Delete program line from DELETE100 2/4
line mm to line nn. DELETE 10-50

DELETE.

EDITmm
Enter Edit Mode for line EDIT100 2/4
mm. See Edit Mode Sub- EDIT.
commands below.

LISTmm-nn
List all program lines from LIST 2/4
mmtonn. LIST30-60

LIST30-
LIST-90
LIST.

LLISTmm-nn
Lists all program LUST 2/5
lines from mm to LLIST30-60
nn on the line
printer.

NEW

Delete entire program and NEW 215
reset all variables, pointers
etc.

RUNmm
Execute program beginning RUN 2/6
at lowest numbered line or RUN55

mm if specified.

SYSTEM SYSTEM
Enter Monitor Mode for 2/6
loading of machine-language
file from cassette.

TROFF

Tum off Trace TROFF 2/7

TRON

Tum on Trace TRON 2/7

A/4

APPENDIX

Edit Mode Subcommands and Functions

Sub- Section 2
Command Function Page

(ENTERJ End editing and return to Command Mode. 912

(SHIFT) (I) Escape from x, I, and H subcommands and remain in Edit Mode. 9/3

n(SPACEBAR) Move cursor n spaces to right. 9/2

nS Move cursor n spaces to left. 9/3

(]J List remainder of program line and return to beginning of line. 9/3

CX) List remainder of program line, move cursor to end of line, 9/4
and start Insert subcommand.

cu Insert the following sequence of characters at current cursor 9/4
position; use Escape to exit this subcommand.

00 Cancel changes and return cursor to beginning of line 9/5

cu End editing, save all changes and return to Command Mode. 9/5

CID End editing, cancel all changes made and return to 9/5
Command Mode.

CID Delete remainder of line and insert following sequence of 9/5
characters; use Escape to exit this subcommand.

nOD Delete specified number of characters n beginning at current 9/6
cursor position.

n© Change (or replace) the specified number of characters n 9/6
using the next n characters entered.

n([)c Move cursor to nth occurrence of character c, counting 9/7
from current cursor position.

nOOc Delete all characters from current cursor position up to nth 9/7
occurrence of character c, counting from current cursor
position.

A/5

TRS-80 MODEL Ill

Input/Output Statements
Section 2

Statement/Function Examples Page

PRINT exp*
Output to Display the value of PRINT A$ 3/1
exp. Exp may be a numeric PRINTX+3
or string expression or PRINT"D="D
constant, or a list of such items.

Comma serves as a PRINT PRINT 1 ,2,3,4
modifier. Causes cursor to PRINT"1", "2"
advance to next print zone. PRINT 1,,2

Semi-colon serves as a PRINT PRINT X;" = ANSWER"
modifier. Inserts a space PRINTX;Y;Z
after a numeric item in PRINT PRINT "ANSWER IS";
list. Inserts no space after a
string item. At end of PRINT
list, suppresses the automatic
carriage return.

PRINT@n

PRINT modifier; begin PRINT@540, "CENTER" 3/2
PRINTing at specified PRINT@ N + 3,X*3
display position n.

PRINTTABn
Print modifier: moves cursor PRINTTAB(N) N 3/3
to specified Display position
n (expression).

PRINT USING string;exp
PRINT format specifier; PRINT USING A$;X 3/4
output exp in form specified PRINT USING "#.#";Y + Z
by string field (see below).

INPUT ''message'' ;variable
Print message (if any) INPUT"ENTER NAME";A$ 3/8
and await input from INPUT"VALUE";X
Keyboard. INPUT"ENTER NUMBERS" ;X,Y

INPUT A,B,C,D$

LPRINT

Output to line printer. LPRINTA$ 3/12

PRINT#-]

Output to Cassette. PRINT# -1,A,B,C,D$ 3/12

* exp may be a string of numeric constant or variable, or a list of such items.

A/6

APPENDIX

INPUT#-1
Input from Cassette. INPUT# -1,A,B,C,D$ 3/13

DAT A item list
Hold data for access by DAT A 22,33, 11 , 1 .2345 3/10
READ statement. DATA "HALL", "SMITH", "DOE"

READ variable list
Assign value(s) to the READ A,A 1,A2,A3 3/10
specified variable(s), starting READ A$,B$,C$,D
with current DAT A element.

RESTORE
Reset DAT A pointer to first RESTORE 3/11
item in first DATA statement.

Field Specifiers for PRINT USING statements
Numeric Section 2
Character Function Example Page

Numeric field (one digit ### 3/4
digit per #).

Decimal point position. ##.### 3/4

+ Print leading or trailing signs +#.### 3/5
(plus for positive numbers, #.###+
minus for negative numbers).

Print trailing sign only if ###.##- 3/5
value printed is negative.

** Fill leading blanks with **###.## 3/4
asterisk.

$$ Place dollar sign immediately $$####.## 3/4
to left of leading digit.

**$ Dollar sign to left of leading **$####.## 3/4
digit and fill leading blanks
with asterisks.

[[[[orCI)(l)(l)(I) Exponential format, with one #.##[[[[3/4
significant digit to left of
decimal. Press (I) to
input this character.

A/7

TRS-80 MODEL Ill

Prints out number with
commas, as in 1,356,000

#,######

Single character.

%spaces% String with length equal to
2 plus number of spaces
between % symbols.

%%

Program Statements

Statement/Function Examples

(Type Definition)

DEFDBL letter list or range
Define as double-precision all DEFDBLJ
variables beginning with DEFDBLX,Y,A
specified letter, letters or DEFDBL A-E,J
range of letters.

DEFINT letter list or range
Define as integer all variables DEFINTA
beginning with specified letter, DEFINT C,E,G
letters or range of letters. DEFINTA-K

DEFSNG letter list or range
Define as single-precision all DEFSNG L
variables beginning with DEFSNG A-L, Z
specified letter, letters or DEFSNG P,R,A-K
range of letters

DEFSTR letter list or range DEFSTRA-J

Define as string all
variables beginning with
the specified letter, letters,
or range of letters.

(Assignment and Allocation)

CLEARn

Set aside specified number CLEAR750
of bytes n for string storage. CLEAR MEM/10
Clears value and type of all CLEARO
variables.

A/8

3/4

3/5

3/5

Section 2
Page

4/3

4/2

4/2

4/3

4/4

APPENDIX

DIM array(dim# 1, ... ,dim#k)
Allocate storage for DIM A(2,3) 4/4
k-dimensional array with the DIM A 1 (15), A2(15)
specified size per dimension: DIM B(X + 2),C(J,K)
dim #1, dim#2, ... , etc. DIM DIM T(3,3,5)
may be followed by a list of
arrays separated by commas.

LET variable = expression
Assign value of expression to LET A$= "CHARLIE" 4/5
variable. LET is optional in LETB1 C1
LEVEL II BASIC. LETA%=1#

(Sequence of Execution)

END

End execution, return to 99END 4/5
Command Mode.

STOP

Stop execution, print Break 100STOP 4/6
message with current line
number. User may continue
with CONT.

GOTO line-number
Branch to specified line-number. GOTO100 4/6

GOSUB line-number
Branch to sub-routine beginning GOSUB3000 4/7
at line-number.

RETURN

Branch to statement following RETURN 4/7
last-executed GOSUB.

ON exp GOTO line# 1, ... , line#k
Evaluate expression; if ON K + 1 GOTO 100,200,300 4/8
INT (exp) equals one of
the numbers 1 through k,
branch to the appropriate
line number. Otherwise go
to next statement.

ON expGOSUB line#], ... ,line#k
Same as ON ... GOTO except ON J GOSUB 330,700 419
branch is sub-routine beginning
at line# 1, line#2, ... , or
line#k, depending on exp.

A/9

TRS-80 MODEL Ill

Statement/Functions Examples Section 2

FOR var= exp TO exp STEP exp Page

Open a FOR-NEXT loop. FOR I= 1 TOSO STEP 1.5 4/9
STEP is optional; if not used, FORM%=J% TOK%-1
increment of one is used.

NEXT variable
Close FOR-NEXT loop. NEXT 4/9
Variable may be omitted. NEXTI
To close nested loops, a NEXTl,J,K
variable list may be used.
See Chapter 4.

ERROR (code)
Simulate the error specified ERROR(14) 4/12
by code (See Error Code
Table).

ON ERROR GOTO line-number
If an error occurs in ON ERROR GOTO 999 4/12
subsequent program lines,
branch to error routine
beginning at line-number.

RESUMEn

Return from error routine RESUME 4/3
to line specified by n. If n RESUME0
is zero or not specified, return RESUME 100
to statement containing error. RESUME NEXT
If n is "NEXT", return to
statement following error-
statement.

RANDOM

Reseeds random number RANDOM 7/4
generator.

REM
REMark indicator; ignore rest REM A IS ALTITUDE 4/14
of line.

A/10

APPENDIX

(Tests - Conditional Statements)

IF exp-1 THEN statement-]
ELSE statement-2

Tests exp-I: If True, execute IF A= 0 THEN PRINT "ZERO" 4/14-4/15
statement-I thenjump to ELSE PRINT "NOT ZERO"
next program line (unless
statement- I was a GOTO).

If exp-1 is False, jump
directly to ELSE statement
and execute subsequent
statements.

(Graphics Statements)

CLS

Clear Video Display CLS 8/2

RESET(x,y)
Tum off the graphics block RESET (8 + B, 11) 8/2
with horizontal coordinate x
and vertical coordinate y,
0< =X<128 andO< = Y<48

SET(x,y)
Tum on the graphics block SET(A*2,B + C) 8/1
specified by coordinates x
and y. Same argument limits
as RESET

(Special Statements)

POKE location, value
Load value into memory POKE 15635,34 8/5
location (both arguments in POKE 17770,A + N
decimal form)
O< = value< = 255.

OUT port, value
Send value to port (both OUT255,10 8/5
arguments between O and 255 OUT55,A
inclusive)

A/11

TRS-80 MODEL m

String Functions*
Section 2

Function Operation Examples Page

ASC(string) Returns ASCII code of first character ASC(B$) 5/2
in string argument. ASC("H")

CHR$(code exp) Returns a one-character string defined CHR$(34) 5/2
by code. If code specifies a control CHR$(1)
function, that function is activated.

PRE(string) Returns amount of memory available FRE(A$) 5/3
for string storage. Argument is a
dummy variable.

INKEY$ Strobes Keyboard and returns a one- INKEY$ 5/4
character string corresponding to key
pressed during strobe (null string if
no key is pressed).

LEFT$(string, n) Returns first n characters of string. LEFT$(A$, 1) 5/5
LEFT$(L 1 $ + C$,8)
LEFT$(A$,M + L)

LEN(string) Returns length of string (zero for null LEN(A$+ 8$) 5/5
string). LEN("HOURS")

MID$(string, p, n,) Returns substring of string with length MID$(M$,5,2) 5/6
n and starting at position p in string. MID$(M$ + B$,P,L-1)

RIGHT$(string,n) Returns last n characters of string. RIGHT$(NA$, 7) 5/6
RIGHT$(AB$,M2)

STR$(numeric exp) Returns a string representation of the STR$(1.2345) 5/6
evaluated argument. STR$(A + 8*2)

STRING$(n,char) Returns a sequence STRING$(30, ".") 5/7
of n char symbols STRING$(25, "A")
using first character STRING$(5,C$)
of char.

TIME$ Returns date and time. TIME$ 5/8

VAL(string) Returns a numeric value corresponding VAL("1" +A$+"."+ C$) 5/8
to a numeric-valued string. VAL(A$+ B$)

VAL(G1$)

*string may be a string variable, expression, or constant.

A/12

APPENDIX

Arithmetic Functions*
Section 2

Function Operation (unless noted otherwise, Examples Page
-1.7E+38< =exp<= 1.7E+38)

ABS(exp) Returns absolute value. ABS(L*.7) 7/1
ABS(SIN(X))

ATN(exp) Returns arctangent in radians. ATN(2.7) 7/1
ATN(A*3)

CDBL(exp) Returns double-precision representa- CDBL(A) 7/2
tionof exp. CDBL(A + 1 /3#)

CINT(exp) Returns largest integer not greater CINT(A#+B) 7/2
than exp. Limits:
- 32768< =exp<+ 32768.

COS(exp) Returns the cosine of exp; assumes COS(2*A) 7/2
exp is in radians. COS(A/57.29578)

CSNG(exp) Returns single-precision representation, CSNG(A#) 7/2
with 5/4 rounding in least significant CSNG(.33*8#)
decimal when exp is double-precision.

EXP(exp) Returns the natural exponential, EXP(34.5) 7/3
eexp = EXP(exp). EXP(A *B*C - 1)

FIX(exp) Returns the integer equivalent to FIX(A-8) 7/3
truncated exp (fractional part of exp
is chopped off).

INT(exp) Returns largest integer not greater INT(A+B*C) 7/3
than exp.

LOG(exp) Returns natural logarithm (base e) LOG(12.33) 7/3
of exp. Limits: exp must be positive. LOG(A B+B)

RND(O) Returns a pseudo-random number RND(0) 7/4
between 0.000001 and 0. 999999
inclusive.

RND(exp) Returns a pseudo-random number RND(40) 7/4
between 1 and INT(exp) inclusive. RND(A+B)
Limits: 1 < = exp<32768.

SGN(exp) Returns - 1 for negative exp; 0 for SGN(A*B+3) 7/4
zero exp; + 1 for positive exp. SGN(COS(X))

*exp is any numeric-valued expression or constant.

A/13

TRS-80 MODEL Ill

Function Operation Examples
Section 2

Page
SIN(exp) Returns the sine of exp; assumes exp SIN(A/8) 7/5

is in radians . SIN(90/57.29578)

SQR(exp) Returns square root of exp. Limits: SQR(A*A B*B) 7/5
exp must be non-negative.

TAN(exp) Returns the tangent of exp; assumes TAN(X) 7/5
exp is in radians. TAN(X* .017 45329)

Special Functions Section 2
Function Operation and Limits Examples Page

ERL Returns line number of current error. ERL 8/3

ERR Returns a value related to current error ERR/2+ 1 8/3

code (if error has occurred). ERR =

(errorcode-1)*2. Also: (ERR/2) + 1 =

error code.

INP(port) Inputs and returns the current value INP(55) 8/4
from the specified port. Both argument
and result are in the range o to 255

inclusive.

MEM Returns total unused and unprotected MEM 8/4
bytes in memory. Does not includ~
unused string storage space.

PEEK(location) Returns value stored in the specified PEEK(15370) 8/4
memory byte. location must be a valid
memory address in decimal form (see
Memory Map in Appendix D).

POINT(x,y) Checks the graphics block specified by 8/2
horizontal coordinate x and vertical
coordinate y. If block is ''on'', returns a
True (- 1); if block is ''off'', returns a
False (0). Limits: 0< =x < 128;0< = y<48.

POS(0) Returns a number indicating the cur- POS(0) 8/4
rent cursor position. The argument
"0" is a dummy variable.

USR(n) Branches to machine language sub- USR(0) 8/7

routine. See Chapter 8.

V ARPTR(var) Returns the address where the specified VARPTR(A$) 8/9
variable's name, value and pointer are VARPTR(N1)

stored, var must be a valid variable name.

A/14

APPENDIX

Model III BASIC Reserved Words*

@

ABS
AND
ASC
ATN
AUTO
CDBL
CHR$
CINT
CLEAR
CLOCK
CLOSE
CLS
CMD
CONT
cos
CSNG
CVD
CVI
CVS
DATA
DEFDBL
DEFFN
DEFINT
DEFSNG
DEFUSR
DEFSTR
DELETE
DIM
EDIT

ELSE LUST RENAME
END LPRINT RESET
EOF LOAD RESTORE
ERL LOC RESUME
ERR LOF RETURN
ERROR LOG RIGHT$
EXP MEM RND
FIELD MERGE RSET
FIX MID$ RUN
FN MKD$ SAVE
FOR MKI$ SET
FORMAT MKS$ SGN
FRE NAME SIN
FREE NEW SQR
GET NEXT STEP
GOSUB NOT STOP
GOTO ON STRING$
IF OPEN STR$
INKEY$ OR SYSTEM
INP OUT TAB
INPUT PEEK TAN
INSTR POINT THEN
INT POKE TIME$
KILL POS TO
LEFT$ POSN TROFF
LET PRINT TRON
LSET PUT USING
LEN RANDOM USR
LINE READ VAL
LIST REM VARPTR

VERIFY

*Some of these words have no function in Model III BASIC; they are reserved for
use in Disk BASIC. None of these words can be used inside a variable name. You '11
get a syntax error if you try to use these words as variables.

A/15

TRS-80 MODEL Ill

Program Limits and Memory Overhead

Ranges

Integers 32768 to + 32767 inclusive
Single Precision -1. 701411E±38 to + 1. 701411E±38 inclusive
Double Precision 1.7014118345445560±38 to+ I .701411834544556O±38 inclusive

String Range: Up to 255 characters

Line Numbers Allowed: o to 65529 inclusive

Program Line Length: Up to 255 characters (input 240, edit to 255)

Memory Overhead

Program lines require 5 bytes minimum, as follows:
Line Number- 2 bytes
Line Pointer-- 2 bytes
Carriage Return - 1 byte

In addition, each reserved word, operator, variable name, special character and
constant character requires one byte.

A/16

Dynamic (RUN-Time) Memory Allocation

Integer variables: 5 bytes each
(2 for value, 3 for variable name)

Single-precision variables: 7 bytes each
(4 for value, 3 for variable name)

Double-precision variables: 11 bytes each
(8 for value, 3 for variable name)

String variables: 6 bytes minimum
(3 for variable name, 3 for stack and variable pointers, I for each character)

Array variables: 12 bytes minimum
(3 for variable name, 2 for total size, I for number of dimensions, 2 for size of

each dimension, and 2, 3, 4 or 8 [depending on array type]
for each element in the array)

Each active FOR-NEXT loop requires 16 bytes.

Each active (non-returned) GOSUB requires 6 bytes.

Each level of parentheses requires 4 bytes plus 12 bytes for each temporary value.

General Formula for Computing Memory Requirements of Arrays

The array G (NI, N2, ... , Nk) requires the following amount of memory:

14 + (k*2) + T*~(N1 +1)*(N2+1)* ... *(Nk+1)~

where k is the number of dimensions in the array, and the value of T depends on the
array type:

Type
Integer
Single-Precision
Double-Precision
String*

T=
2
4
8
3

*In computing the actual memory requirements of string arrays, you must add the
text length of each element in the array. When the array is first dimensioned, all
elements have length o. The string text will be stored in the string space (reserved by
the CLEAR n statement).

A/17

TRS-80 MODEL Ill

Accuracy

Single-precision calculations involving +, , *,and; are accurate to six significant
digits; double-precision calculations involving the same operations are accurate to
16 significant digits.

The exponentiation operator CO (displayed as ''['')is single-precision.

The trigonometric and logarithmic functions are single-precision; other functions
have a precision depending on the input argument and on the function. For
example, CDBL returns a double-precision value; ABS returns a value with the same
precision as the input argument.

When converting from single- to double-precision, use the following technique to
avoid introduction of incorrect values in the extra digits of precision:

double-precision variable= VAL (STR$ (Single-precision variable))

A/18

APPENDIX

B / Error Codes

CODE ABBREVIATION ERROR

NF NEXT without FOR

2 SN Syntax error

3 RG Return without GOSUB

4 OD Out of data

5 FC Illegal function call

6 OV Overflow

7 OM Out of memory

8 UL Undefined line

9 BS Subscript out of range

10 DD Redimensioned array

11 10 Division by zero

12 ID Illegal direct

13 TM Type mismatch

14 OS Out of string space

15 LS String too long

16 ST String formula too complex

17 CN Can't continue

18 NR NO RESUME

19 RW RESUME without error

20 UE Unprintable error

21 MO Missing operand

22 FD Bad file data

23 L3 Disk BASIC only

B/1

TRS-80 MODEL m

Explanation of Error Messages

NF NEXT without FOR: NEXT is used without a matching FOR statement. This
error may also occur if NEXT variable statements are reversed in a nested
loop.

SN Syntax Error: This usually is the result of incorrect punctuation, open
parenthesis, an illegal character or a mis-spelled command.

RG RETURN without GOSUB: A RETURN statement was encountered before a
matching GOSUB was executed.

OD Out of Data. A READ or INPUT# statement was executed with insufficient
data available. DAT A statement may have been left out or all data may have
been read from tape or DA TA.

FC Illegal Function Call: An attempt was made to execute an operation using an
illegal parameter. Examples: square root of a negative argument, negative
matrix dimension, negative or zero LOG arguments, etc. Or USR call without
first POKEing the entry point.

ov Overflow: The magnitude of the number input or derived is too large for the
Computer to handle. NOTE: There is no underflow error. Numbers smaller
than ± 1.701411 E - 38 single precision or ± 1.7014 l l 834544556E - 38
double precision are rounded to O. See /0 below.

OM Out of Memory: All available memory has been used or reserved. This may
occur with very large matrix dimensions, nested branches such as GOTO,
GOSUB, and FOR-NEXT Loops.

UL Undefined Line: An attempt was made to refer or branch to a non-existent
line.

BS Subscript out of Range: An attempt was made to assign a matrix element
with a subscript beyond the DIMensioned range.

DD Redimensioned Array: An attempt was made to DIMension a matrix which
had previously been dimensioned by DIM or by default statements. It is a
good idea to put all dimension statements at the beginning of a program.

/0 Division by Zero: An attempt was made to use a value of zero in the
denominator. NOTE: If you can't find an obvious division by zero check for
division by numbers smaller than allowable ranges. See ov above and
RANGES page A/17.

rn · Illegal Direct: The use of INPUT as a direct command.

TM Type Mismatch: An attempt was made to assign a non-string variable to a
string or vice-versa.

8/2

APPENDIX

OS Out of String Space: The amount of string space allocated was exceeded.

LS String Too Long: A string variable was assigned a string value which
exceeded 255 characters in length.

ST String Formula Too Complex: A string operation was too complex to
handle. Break up the operation into shorter steps.

CN Can't Continue: A CONT was issued at a point where no continuable program
exists, e.g. , after program was ENDed or EDITed.

NR No RESUME: End of program reached in error-trapping mode.

RW RESUME without ERROR: A RESUME was encountered before ON ERROR GOTO
was executed.

UE Unprintable Error: An attempt was made to generate an error using an
ERROR statement with an invalid code.

MO Missing Operand: An operation was attempted without providing one of the
required operands.

FD Bad File Data: Data input from an external source (i.e., tape) was not correct
or was in improper sequence, etc.

L3 DISK BASIC only: An attempt was made to use a statement, function or
command which is available only with the Disk System.

B/3

APPENDIX

C / TRS-80 Model III Character
Codes
Text is represented in the Computer by codes. For example, the letter II A" is
represented by the code 65. Control functions and graphics are also represented
by codes. The character codes range from zero through 255.

Codes zero through 31 usually represent certain control functions. For example,
code 13 represents a carriage return or '' end of line''. However, in the Model III,
these same codes also represent 32 special display characters. For this application,
they must be loaded (P0KEd) into video RAM, not PRINTed.

Codes 32 through 127 represent the text characters - all those letters, numbers
and other characters that are commonly used to represent textual information. The
Model III text characters conform to the American National Standard Code for
Information Interchange.

Codes 128 through 191, when output to the video display, represent 64 graphics
characters.

Codes 192 through 255, when output to the video display, represent either space
compression codes or special characters, as determined by software.

Many of the codes may be input from the keyboard; all of them may be stored in a
string and output to any device. For example, to output a code 31 to the video
display, use a statement like this:

PRINT CHR$(31)

For further details, see Using the V idea Display in Section One of this manual.

Note: In the following table, vidram refers to Video RAM, i.e., addresses
from 15360 to 16383.

C/1

TRS-80 MODEL m

In the following table, we summarize the keyboard and video display control
characters

Code Video Display
Dec. Hex. Keyboard PRINT CHA$ (code)

1 00 No effect
1 01 (BREAK) No effect

CSAIFfl mm
2 02 (SHIFT) (£) CID No effect
3 03 (SHIFT) (!) (I) No effect
4 04 (SHIFT) CJ) OD No effect
5 05 (SHIFT) (D CD No effect
6 06 (SHIFT) (1) CD No effect
7 07 (SHIFT) CJ) CID No effect
8 08 8 Backspace and erase

(SHIFT) (I) OD
9 09 8 Tab(0,8,16,24, ...)

(SHIFT) (!) CD
10 0A co Move cursor to start of

(SHIFT) (1) QJ next line and erase line
11 OB (SHIFT) (£) QO No effect
12 oc (SHIFT) (!) OJ No effect
13 OD (ENTER) Move cursor to start of next

(SHIFT) CJ) 00 line and erase line
14 OE (SHIFT) (D CJD Cursor on
15 OF (SHIFT) (I) CID Cursor off
16 10 (SHIFT) (I) (eJ No effect
17 11 (SHIFT) (I) CID No effect
18 12 (SHIFT) CO 0D No effect
19 13 (SHIFT) (1) ([) No effect
20 14 (SHIFT) (£) CD No effect
21 15 (SHIFT) (1) OD Swap space compression/

special characters
22 16 (SHIFT) (I) 00 Swap special/alternate characters
23 17 (SHIFT) (I) 00 Double-size characters
24 18 (SHIFT) (3 Backspace without

(SHIFT) (1) 0D erasing
25 19 (SHIFT) (I) CY) Advance cursor
26 1A (SHIFT) Cl) CZ] Move cursor down
27 18 (SHIFT) CI) Move cursor up
28 1C (SHIFT) Cl) 0 Move cursor to upper left corner
29 1D (SHIFT) m CID Erase line and start over
30 1E (SHIFT) (I) 0 Erase to end of line
31 1F (CLEAR) Erase to end of display

(SHIFT) (I) CZ)

*See Special Characters 0 through 31 later in this Appendix.

C/2

POKE vidram, code*

;.<:

:.a
=:
(1)
0..
0..
~

er.,

:E ,._.

.s
1-,
(1) ,._.
~ -M

..c
~
::::l
0
1-,

..c ,._.
0

rr.J -~ -,j,d

~
~ -~ ..= u
-;
·o
~
Q.

rJ)_

(1)
(1)

C/:l

Code Video Display
Key-

Dec. Hex. board PRINT CHR$ (code) POKE vidram, code
32 20 (SPACE BAR) l?J ltJ'
33 21 ! ! !
34 22 II II II

35 23 # # #
36 24 $ $ $
37 25 % % %
38 26 & & &
39 27 ' ' '
40 28 (((

41 29)))
42 2A * * *
43 28 + + +
44 2C

' ' ' 45 20 - -
46 2E
47 2F I I I
48 30 0 0 0
49 31 1 1 1
50 32 2 2 2
51 . 33 3 3 3
52 34 4 4 4
53 35 5 5 5
54 36 6 6 6
55 37 7 7 7
56 38 8 8 8
57 39 9 9 9
58 3A
59 38

' ' ' 60 3C < < <
61 30 = = =
62 3E > > >
63 3F ? ? ?
64 40 @ @ @
65 41 A A A
66 42 8 8 B
67 43 C C C
68 44 0 0 D

C/3

TRS-80 MODEL Ill

Code Video Display
Key-

Dec. Hex. board PRINT CHA$ (code) POKE vidram, code
69 45 E E E
70 46 F F F
71 47 G G G
72 48 H H H
73 49 I I I
74 4A J J J
75 48 K K K
76 4C L L L
77 4D M M M
78 4E N N N
79 4F 0 0 0
80 50 p p p
81 51 Q Q Q
82 52 R R R
83 53 s s s
84 54 T T T
85 55 u u u
86 56 V V V
87 57 w w w
88 58 X X X
89 59 y y y
90 5A z z z
91 58 CI) [[
92 5C _ \
93 5D l l
94 5E /\ I\

95 5F - -
96 60 (SHIFT) ® ' '
97 61 A a a
98 62 8 b b
99 63 C C C

100 64 D d d
101 65 E e e
102 66 F f f
103 67 G Q a
104 68 H h h
105 69 I i i

C/4

APPENDIX

Code Video Display
Key-

Dec. Hex. board PRINT CHA$ (code) POKE vidram, code
106 6A J i i
107 68 K k k
108 6C L I I
109 6D M m m
110 6E N n n
111 6F 0 0 0

112 70 p p p
113 71 Q q q
114 72 R r r
115 73 s s s
116 74 T t t
117 75 u u u
118 76 V V V

119 77 w w w
120 78 X X X

121 79 y y y
122 7A z z z
123 7B { {

17 124 7C I I
I I

125 7D } }
126 7E ~ ~
127 7F ± ±
128 80 Codes 12a-191 output graphics characters. See the graphic

display table in this Appendix.
192 co Codes 192-255 output either space

compression codes or special characters when
used with PRINTCHR$ (code).

255 FF They always output special characters
when used with POKE vidram, code.
See the special character table in this Appendix.

C/5

TRS-80 MODEL

Graphics Characters (Codes 128-191)

C/6

APPENDIX

Special Characters (0-31, 192-255)

0 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 19 20 21 22 23

24 25 26 27 28 29 30

192 193 194 195 196 197 ms

200 201 202 203 204 205 206 207

C/7

TRS-80 MODEL Ill

208 209 210 211 212 213 214 215

216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231

232 234 235 236 237 238 239

240 241 242 243 244 245 246 247

248 249 250 251 252 253 254 255

C/8

TRS-80 Video Display Worksheet
TITLE PROGRAMMER

1tad1e
PAGE_Qf_

APPENDIX

D I Internal Codes for BASIC
eywords

The following are the internal codes that the Computer uses to store BASIC

keywords. If you PEEK at the program buffer area (starting at address 17129 in
decimal) you will find your program stored in the following codes.

Dec. Dec.
Code BASIC Keyword Code BASIC Keyword

129 FOR 167 LOAD
130 RESET 168 MERGE
131 SET 169 NAME
132 CLS 170 KILL
133 CMD 171 LSET
134 RANDOM 172 RSET
135 NEXT 173 SAVE
136 DATA 174 SYSTEM
137 INPUT 175 LPRINT
138 DIM 176 DEF
139 READ 177 POKE
140 LET 178 PRINT
141 GOTO 179 CONT
142 RUN 180 LIST
143 IF 181 LUST
144 RESTORE 182 DELETE
145 GOSUB 183 AUTO
146 RETURN 184 CLEAR
147 REM 185 CLOAD
148 STOP 186 CSAVE
149 ELSE 187 NEW
150 TRON 188 TAB
151 TROFF 189 TO
152 DEFSTR 190 FN
153 DEFINT 191 USING
154 DEFSNG 192 VARPTR
155 DEFDBL 193 USR
156 LINE 194 ERL
157 EDIT 195 ERR
158 ERROR 196 STRING$
159 RESUME 197 INSTR
160 OUT 198 POINT
161 ON 199 TIME$
162 OPEN 200 MEM
163 FIELD 201 INKEY$
164 GET 202 THEN
165 PUT 203 NOT
166 CLOSE 204 STEP

D/1

TRS-80 MODEL Ill

Dec. Dec.
Code BASIC Keyword Code BASIC Keyword

205 + 231 CVS
206 232 CVD
207 * 233 EOF
208 I 234 LOC
209 235 LOF
210 AND 236 MKI$
211 OR 237 MKS$
212 > 238 MKD$
213 239 CINT
214 < 240 CSNG
215 SGN 241 CDBL
216 INT 242 FIX
217 ABS 243 LEN
218 FRE 244 STA$
219 INP 245 VAL
220 POS 246 ASC
221 SQR 247 CHA$
222 RND 248 LEFT$
223 LOG 249 RIGHT$
224 EXP 250 MID$
225 cos
226 SIN
227 TAN
228 ATN
229 PEEK
230 CVI

D/2

APPENDIX

E / Derived Functions
Function

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT
INVERSE COSECANT
INVERSE COTANGENT
HYPERBOLIC SINE
HYPOBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT
INVERSE HYPERBOLIC

SINE
INVERSE HYPERBOLIC

COSINE
INVERSE HYPERBOLIC

TANGENT
INVERSE HYPERBOLIC

SECANT
INVERSE HYPERBOLIC

COSECANT
INVERSE HYPERBOLIC

COTANGENT

Inverse Sine
Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Hyper. Cosine
Inverse Hyper. Tangent
Inverse Hyper. Secant
Inverse Hyper. Cosecant
Inverse Hyper. Cotangent

Function Expressed in Terms of Model III BASIC Functions.
X is in radians.

SEC(X) 1 /COS(X)
CSC(X) = 1 /SIN(X)
COT(X) 1 /TAN(X)
ARCSIN(X) = ATN(X/SQR(- X*X + 1))
ARCCOS(X) - ATN(X/SQR(X*X + 1)) + 1.5708
ARCSEC(X) = ATN(SQR(X*X-1)) + (SGN(X)-1)*1.5708
ARCCSC(X) ATN(1 /SQR(X*X- 1)) + (SGN(X) - 1)*1.5708
ARCCOT(X) = ATN(X) + 1.5708
SINH(X) = (EXP(X)- EXP(-X))/2
COSH(X) (EXP(X) + EXP(X))/2
TANH(X) = EXP(-X)/(EXP(X) + EXP(-X))*2 + 1
SECH(X) 2/(EXP(X) + EXP(X))
CSCH(X) = 2/(EXP(X) EXP(-X))
COTH(X) = EXP(- X)/(EXP(X) EXP(- X))*2 + 1

ARGSINH(X) LOG(X + SQR(X*X + 1))

ARGCOSH(X) = LOG(X + SQR(X*X- 1))

ARGTANH(X) = LOG((1 + X)/(1 X))/2

ARGSECH(X) = LOG((SQR(- X*X + 1) + 1)/X)

ARGCSCH(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/X)

ARGCOTH(X) = LOG((X + 1)/(X-1))/2

Valid Input Ranges

-1<X<1
-1<X<1
X < - or X>1
X < -1 or X > 1
X>1
X*X < 1
0<X<1
X <> 0
X*X > 1

Certain special values are mathematically undefined, but our functions may
provide invalid values:

TAN and SEC of 90 and 270 degrees
COT and CSC of 0 and 180 degrees

For example, TAN(l .5708) returns a value but TAN(90* .o 1745329) returns a DIVISION

BY ZERO error. 90* .01745329 = 1.5708

E/1

TRS-80 MODEL Ill

Other values which are not available from these functions are:

ARSCIN (- 1) - Pl / 2
ARCS IN (1) = Pl / 2
ARCCOS (- 1) Pl
ARCCOS (1) = 0
ARCS EC (- 1) = - Pl
ARCSEC (1) = 0
ARCCSC (-1) = - Pl/ 2
ARCCSC (1) = Pl / 2

Please note that the above information may not be exhaustive.

E/2

APPENDIX

F / Base Conversions

DEC. HEX. BI 1\11\RY Dl::::C .. HEX .. BIN,6.HY
--------------------- ---------------------

ill 00 l1(2'.H2)0(2'.t000 4.0 28 G.W.11e.11000
1. 01 00000001. L1, 1 29 (10101001
L· 02 0000v.'.l(lJ 1 0 Li,:2 2A (Zl(l.l 1 01 0 1.(2)
3 03 0(1000011 L1.:~ L:f!. 0'2H0HH :J.
Li Q'JL1, 000l1v.'.I 100 L1, .I.. 2C ,101 (~ 1. 1 0,~
t:
.} 0:) v.'.1(2)000 :J. 01 Li,~) 2D 00101 HH
6 06 0(2'.1000110 it,6 2E 00H11110
7 Q'.1"7 (l.100001 l 1 L1,"/ 2F 00 l 01 l 1 1
B 08 00001000 L1,8 30 00110000
9 G.~9 00001.001 49 31 00110001.

10 0A 0000101.0 ~H!'.I :·3~7:: 00110010
1. 1 0B 00001011 :) 1 33 0(2'.11. 10011
l.2 (ZIC 00001.100 ~.2 31• 12'.10l.10100
l.3 eJD 00001. 112'.11 ::,:3 3~:, 00110HH
1 L• 0E 000011 H1 ~,l. 36 0011.01.10
1.5 0F 00001111 ::, ~) 37 00110111
16 10 000 :J. 00v.'.10 :,6 38 00111000
17 l1 00010001. ::,7 39 001 110en
18 12 00010010 ::,8 3A 0011 l. 010
19 1 :3 (2'J0010011 ::,9 3B 001. 1. 1.01. 1
20 1A 000101.0(;.~ 60 3C 00111100
21 15 00010101 61 :m 00111101 ~·::~~ 16 00010110 6:2 3E 0011111. 0
~=~:·.3 17 00010111 63 3F 001. 11. 111
2L• 1B 00011000 61.• L•(ZI 01000000
L5 19 00011001 65 41 01000001.
26 1A 000110 U2) 66 L .-•, ... ::. 0100001.0
27 1B 0001101.1 67 L•:3 01000011
28 1C 0001110[~ 68 411, 01000100
29 1D 00011101 t:,t7 L•S 010001.01
30 1E 000111 l.0 70 46 01.000110
:H 1F 0,,011111 71 47 010001 l 1
:~:~: 20 00100000 72 L•B 01001.000
33 21 00100001 7:3 L1,9 0100100:1.
:~1. L~:;;: 00100010 71.• L•A (2'.11001010
35 23 00100011 7~5 L•B 01001011
36 2L• 001 001. 00 76 4C 01001100
37 25 00100101. 77 L~[) 01001101
38 26 0010(2)110 78 4E 010011.10
=~9 27 001.00111 79 L•F 0100111.1

F/1

TRS-80 MODEL Ill

DEC" HEX .. BII\IAHY DEC .. HEX u BII\IM1Y
.... .. " _., _ "'" "-------------------

Bt~I ::i(ZI 0101 (Zl(2)00 120 78 01111.000
£1 :I. ~:d C.1 l (ZI 1 (l.J(Zlk11. 12l. 79 (Zll.111001
E:2 ~)2 (ZI 1 C~I j_ 001 0 :J. ~=~~=: 7A 011110H!I
f:13 :,3 0101 (Zt(ZI 1 1 1?] 7B 011.110U.
BL1, ~)LI. (11010100 12L1. 7C 01111100
flt:\ =· ~) 01(ZIH1101 1 .-·,c:: .,::,_,. 7D 01111101
B6 :)6 e11t~1:1.e.111e.1 1:?6 7E 011111l.0
ff7 :,7 0HH0l 11 127 7F 01Ul111
BB SB [11 (Zl 1 1 (Zl(Zl(ZI 1?8 80 1000C100'-1
B9 :)9 (ZI 1 0 j. 1 001 129 81 10000001
cn?l 5A 01011010 :130 82 l.0000010
91. 5B 01011(2'.111 1.:H B:3 1000001 :I.
92 :)C 01011100 132 flL1, 1000e,100
93 :)I) (ZIH1111.01 1 :53 8:) 1000010:1.
91• :>E 0101:1.11.0 1 :3Lt 86 1000011.0
9~:) ::,F Q'.11011111 1 :3~::, ff? 1000011.1
96 6(1 0110(7.J000 1 :56 88 10001000
97 61 011000(11 1 :~7 89 10001001
9B t. .-,

~ .,::. 01 l 00(110 1 :~8 BA 1000112'.11.0
99 63 0110001.1 1:39 BB 10001011

100 6L1, 01100100 1 L1.(2'.I BC 10001100
101 6:) 011121010:1. 1 'r• 1 BD 10001101
1(Zt2 61:.> 01 1 00 j_ 1 (ZI 1 L1,2 BE 10001110
103 67 01100.'.1111 1 L1.:·5 BF 10001111
l 0Lt, 6B 01101000 1 LtL~ C/0 10010000
105 69 01 HH001 1 it:) 91 10ei10001
1 t16 6A 0:I.H.1J1010 1L•6 9·-, J::. l0(2'J100:l.0
1 k17 6B 01101011 1 L•7 93 10010011
H18 6C 01 l 01100 1 L•B 9Lt 10010100
109 6D 01101101 1 Lt9 95 10010101
1 :1.0 6E 011011:1.IZI 150 96 10010110
U1 6F 01101111 1:d 97 10010111
l12 70 01110000 1 ~)2 98 10011000
1 :l :~ 71 01110001 1 :):~ 99 1001l0(2'.11
1 jA 72 01110010 1 ~:)4 9A 10011010
-1 :I.::, 73 01110011 15:) 9B 10011011
116 7L1, 01110100 1 ~:)6 9C 10011100
1:1.7 7:) 01110101 157 9D 10011101
1 :1.8 76 01110110 158 9E 10011110
1 :I. 9 77 01110111 159 9F 100111 U.

F/2

APPENDIX

DEC .. HEX .. BINAHY DEC .. HEX .. BINAHY
--------------------- u ""· -·· ,_ -·

160 A0 10100000 200 CB 11 m1i 000
161 A1 10100001 201 C::9 1.1001001.
1.62 A2 101000:1.0 202 CA 1 :1.00HH0
163 A3 1 01000 :I. :I. 20:5 CB 1 :I. 0(2)l 0:1. 1.
16L• AL1, 1 01 00100 2(ZIL• cc 1 l 00 :I. l e.10
16:, AS 10100:1.0:1. :?0~) CD 11e.H2'.l:l.10l
166 A6 :1.0100110 206 CE 1 l 001110
:1.67 A7 :I. 01 e.HlJ:I. :I. 1 :.::'.VJ J CF 1 :l 00111 :I.
168 AB 10101.000 :?08 D0 1 HlJ10000
169 A9 :I. 0101001 209 D1 :I. :I. 010Q'.t0l
170 AA 10101010 2H.1 D2 1101e.1eu0
17l AB 10101011 21.1 D3 11010011
172 AC 10101100 ~=~ l :;:: I)L1, 110101C.1(ZI
17:3 AD 10101101 213 D5 1 HH0101
17L• AE 101011 H~ 21L1, D6 110:1.tH l0
17~) AF 10101 :1.11 2:15 D7 l 10:l.0l 1 l
176 80 10110000 216 DB 110:1.1000
1TI 81 10110001 217 D9 11011001
178 e.2 10:1.10010 21E3 DA 11011010
179 83 10110011 219 DB 110:1.10:1.1
180 84 10110100 22Q'.I DC 1101:1.100
181 pc:· .,:J 10110101 ~=~::;~ 1 DD 11011101
182 86 :1.0:1.10110 ~:~ :;:~~7:: DE 1HH:l.110
183 B7 10110:1.11 ;::~:::3 DF 1U2:i:J.11:l.1
1 BL• BB Ui.H 11000 22L1, E0 11100000
18~, 89 1 01 :I. 1 001 L~~7::5 E1 11100001.
186 BA 10111010 ~=~:~: t.> E2 11100010
187 BB 10111011 -;::-;;:-, E3 1110(ZtQ'.I 11
188 BC 101111 fZJ0 228 E4 :1.1 :1.00100
189 BD 10111:1.01 ~:~~=~9 ES :I. :1.100101
190 BE 10111110 230 E6 11100110
191 BF 10111.111 231 E7 11 :I. 00:1. 11
192 C0 11000000 :;;::3~7:: EB 1110:1.000
193 Ci 1.1000001 2:53 E9 1110:1.001
194 c·-· ..::. 11000010 2:3L1, EA 11. 101010
195 C:3 11000011 2;35 EB 111010:1.1
196 CL• 11000100 2:56 EC 1110l100
197 C5 11000101 ·;r:.r? ED 11101101
198 C6 11000110 238 EE ll:1.01110
199 C7 11000111 239 EF 11101111

F/3

TRS-80 MODEL Ill

DEC- HEX .. Bil\l,6-HY

~:•L1,(ZI F0 111 100(2HlJ
2L~ 1 F1 1U 10G,1(ZI 1
2L1,2 F2 l1 110010
~:'.L1,:~ F3 1.1 :I. H".1011
2L~L1, FA 1.11 H:1100
::::I.~:) F~, 1 li 1.0101
21.1,6 F6 11 1101 1 (lJ
2L1,7 F7 1l l. 10111
;~: 11-B FB u 111000
2L1-9 F9 11111.001
2:)0 FA U.1 1 1.01.0
2~:) 1 FB 11111011
~:::>~:: FC 1 1 111100
~:~ ~::, ::~ FD U.1. 11101
2'.:::i.1.1. FE 1 1.111U0
~:':)5 FF 11. 11 1111

F/4

APPENDIX

GI Model I to Model III Program
Conversion Hints
From a language standpoint, Model III BASIC is fully compatible with Model I
Level II BASIC. In fact, the two BASIC's are identical, except that Model III BASIC
includes one more function, TIME$.

However, because of Model Ill's many special features not available in Model I,
there are some internal differences which may require that you modify any Model I
Level II BASIC programs you may have.

1. For a given TRS-80 (16K, 32K or 48K RAM), the amount of user memory in Model
III is 258 bytes less than the amount in Model I.

2. To load a Level II BASIC program, you must select the Low (.500 baud) cassette
speed on your Model III.

3. When running a Level II BASIC program which requires all-capitals keyboard
entries, be sure to select all-caps mode. (SHIFT)([) is the on/off toggle for
all-caps.

4. Unlike the Model I, Model III lets you interrupt a cassette, line printer, or
RS-232-C operation by holding down the (BREAK) key. Some of your Level II
programs may need modification to take this feature into account.

5. The video display character sets are slightly different in Model I and Model III.
Model III produces standard ASCII characters for codes 32 through 127; Model I
does not. In particular, there is no up arrow, down arrow, left arrow or right
arrow in the Model III character set. However, Model III has an additional set of
96 special characters from which you can probably find whatever you need. See
the table of Model III Character Codes for details.

Radio Shack Applications Programs

For a list of which Model I programs will run on Model III and which won't, see the
Radio Shack Computer Catalog. Most Model I-only programs will be available in
Model III versions. Check at your local Radio Shack.

G/1

APPENDIX

Hf Glossary
address A location in memory, usually specified as a two-byte hexadecimal
number. The address range [o to FFFFJ is represented in decimal as [o to 32767]

[- 32768, ... , - 1].

alphabetic Referring strictly to the letters A to z.

alphanumeric Referring to the set of letters A to z and the numerals 0-9.

argument The string or numeric quantity which is supplied to a function and is
then operated on to derive a result; this result is referred to as the value of the
function.

array An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts. In BASIC, any
variable name can be used to name an array; and arrays can have one or more
dimensions. AR() signifies a one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII American Standard Code for Information Interchange. This method of
coding is used to store textual data. Numeric data is typically stored in a more
compressed format.

BASIC Beginners' All-purpose Symbolic Instruction Code.

binary Having two possible states, e.g., the binary digits o and 1. The binary (base
2) numbering system uses sequences of zeroes and ones to represent quantities.
This is analagous to the Computer's internal representation of data, using electrical
values for o and 1.

bit Binary digit; the smallest unit of memory in the Computer, capable of
representing the values o and 1.

break To interrupt execution of a program. In BASIC the statement STOP causes a
break in execution, as does pressing the (BREAK) key.

buffer An area in RAM where data is accumulated for further processing.

byte The smallest addressable unit of memory in the Computer, consisting of 8

consecutive bits, and capable ofrepresenting 256 different values, e.g., decimal
values from o to 255.

compressed-format A method of storing information in less space than a standard
. ASCII representation would require. An integer always requires two bytes; a
single-precision number, four; a double-precision number, 8 - regardless of how
many characters are required to represent the numbers as text. String values are not
stored in compressed format; each character requires one byte.

BASIC programs in RAM are stored in compressed-format, with all BASIC keywords
stored as special one-byte codes.

H/1

TRS-80

data Information that is passed to or output from a program. There are four types
of data:
• Integer numbers
• Single-precision numbers
• Double-precision numbers
• Character-string sequences (strings)

debug To find and remove logical or syntactic errors from a program.

decimal Capable of assuming one of ten states, e.g., the decimal digits o, I, ... ,9.

Decimal (base 10) numbering is the everyday system, using sequences of decimal
digits. Decimal numbers are stored in binary code in Model III BASIC.

default An action or value which is supplied by a program when you do not specify
an action or value to be used.

delimiter A character which marks the beginning or end of a data item, and is not a
part of the data. For example, the double-quote symbol is a string delimiter to
BASIC.

device A physical part of the computer system used for data 1/0, e.g. , keyboard,
display, or line printer.

diskette A magnetic recording medium for mass data storage.

dummy variable A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant.

edit To change existing information.

entry point The address of a machine-language program or routine where
execution is to begin. This is not necessarily the same as the starting address. Entry
point is also referred to as the transfer address.

hexadecimal or hex Capable of existing in one of 16 possible states. For example,
the hexadecimal digits areo,1,2, ... ,9,A,B,C,D,E,F. Hexadecimal (base-16)
numbers are sequences of hexadecimal digits. Address and byte values are
frequently given in hexadecimal form. In Model III BASIC, hexadecimal constants
can be input by prefixing the constant with &H.

increment The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input To transfer data from outside the Computer (from a cassette file, keyboard,
etc.) into RAM.

kilobyte or K 1024 bytes of memory. Thus a 64K System includes 64* 1024=65536
bytes of memory.

logical expression An expression which is evaluated as either TRUE (= - 1) or
FALSE (=0).

H/2

APPENDIX

machine language The Z-80A instruction set, usually specified in hexadecimal
code. All higher-level languages must be translated into machine-language, or
interpreted by machine language, in order to be executed by the Computer.

null string A string which has a length of zero. For example, the assignment A$ = 11

11 makes A$ a null string.

object code Machine language derived from' 'source code'', typically, from
assembly language.

octal Capable of existing in one of eight states, for example, the octal digits are o,
1, ... , 7. Octal (base-8) numbers are sequences of octal digits. Address and byte
values are frequently given in octal form. Under Model III BASIC, an octal constant
can be input by prefixing the octal number with the symbol &O.

output To transfer data from inside the Computer's memory to some external
area, e.g., a disk file or a line printer.

parameter Information supplied with a command to specify how the command is
to operate.

prompt A character or message provided by a program to indicate that it's ready to
accept keyboard input.

random access memory or RAM Semiconductor memory which can be addressed
directly and either read from or written to.

routine A sequence of instructions to carry out a certain function; typically, a
routine called from multiple points in a program.

statement A complete instruction in BASIC.

string Any sequence of characters which must be examined verbatim for meaning:
in other words, the string does not correspond to a quantity. For example, the
number 1234 represents the same quantity as 1000+234, but the string 11 123411 does not.
(String addition is actually concatenation, or stringing-together, so that: 11 123411

equals 11 111 + 11211 + 11311 + 11411
).

syntax The ''grammatical'' requirements for a command or statement. Syntax
generally refers to punctuation and ordering of elements within a statement.

transfer address See entry point.

H/3

APPENDIX

I/ RS-232-C Technical Information
Transmission of Digital Data

The transfer of digital data over relatively long distances is generally accomplished
by sending data in serial form using a single twisted wire pair to connect the
transmitting and receiving devices. One of two general transmission techniques is
commonly used, asynchronous or synchronous. The transmission technique used
in the Radio Shack system is asynchronous-bit-serial. Since we don't use the
synchronous technique, we'll not mention it again. Asynchronous transmission
does not require a synchronizing clock to be transmitted with the data and, the
characters need not be contiguous. This means that gaps of varying lengths may be
present between transmission of individual characters.

The bits which comprise a data character (generally from five to eight bits in length)
and synchronizing start and stop elements are added to each character as shown
below. The start element is a single logic zero (0) data bit that is added to the
front
character. The stop element is maintained until the start element of the next
character is transmitted. There is no upper limit to the length of the stop element.
However, there is a lower limit that depends on system characteristics. Typical
lower limits are 1.0, 1.42 or 2.0 data-bit intervals (although most modern systems use
1.0 or 2.0 stop bits). The negative-going transition of the start element defines the
location of the data bits in the character being transmitted. A clock source at the
receiver is reset by this transition and is used to locate the center of each data bit.

There are several good reasons for using the asynchronous data transmission
system. A clock signal does not need to be transmitted with the data, thus,
equipment is simpler. Also, the characters don't need to be sent all atone time; they
can be transmitted as they become available. This is particularly useful when
transmitting data from manual-entry input devices (e.g. a keyboard). The major
disadvantage of asynchronous transmission is that it requires a significant portion
of the communications bandwidth for start and stop elements.

The rate at which asynchronous data is transmitted is defined as the baud rate.
Baud rate is the inverse of the time duration of the shortest signal element.
Normally, this is one data bit interval. The baud rate is equal to the bit rate if one
stop bit is used; but for systems which use more than one stop bit, the baud rate does
not equal the bit rate.

START ELEMENT STOP ELEMENT

J I
Ln_Jl1 _____ n.....__ __ n.....___

I ---- _... /
ONE 8 BIT CHARACTER START ELEMENT

STOP ELEMENT (11001000)
ONE 8 BIT CHARACTER

(00100000)

Asynchronous Data

1/1

TRS-80 MODEL Ill

Asynchronous transmission over a simple twisted wire pair can be accomplished at
moderately high baud rates (IOK baud or higher, depending on the length of wire,
type of drivers, etc.). Transmission over the telephone network is generally limited
to approximately 2K baud and a modem is required to convert the data pulses to
tones that can be transmitted through the telephone network. Radio Shack's
Telephone Interface is the ideal modem for this Rs-232 .. c Interface.

Signal Conventions

The E.I.A. RS-232-C electrical specification defines voltage levels and corresponding
logic conventions associated with data and control information transmitted
between equipment. For data interchange, the signal is considered in the marking
condition when the voltage measured at the interface point is more negative than
- 3 Volts(with respect to signal ground). The signal is considered in the spacing
condition when the voltage is more positive than + 3 Volts(with respect to signal
ground). The marking condition corresponds to a logic one (1) and the space
condition corresponds to a logic zero (o). For timing and control interchange
circuits, the function is considered to be ''on'' when the voltage on the interchange
circuit is more positive than+ 3 Volts(with respect to signal ground); and is
considered to be ''off'' when the voltage is more negative than - 3 Volts(with
respect to signal ground). The ''on'' condition corresponds to a logic zero (o) and
the ''off'' condition corresponds to a logic one (1). The following table summarizes
this information.

INTERCHANGE VOLTAGE
NOTATION

Negative Positive

Binary State 1 0
Signal Condition Marking Spacing
Function OFF ON

Table. On/Off Condition

1/2

Pin Designations and Signal Descriptions

The mechanical specification of the RS-232-C requires a 25-pin connector (called a
DB-25). The following table specifies the pin assignments and signal descriptions as
they apply to the Radio Shack RS-232-C Interface.

Pin Number Abbreviation Description

1 POND Protective Ground
2 TD Transmit Data
3 RD Receive Data
4 RTS Request-to-Send
5 CTS Clear-to-Send
6 DSR Data Set Ready
7 SGND Signal Ground
8 CD Carrier Detect

14 STD Secondary Transmit Data
18 SUN Secondary Unassigned
19 SRTS Secondary Request-to-Send
20 DTR Data Terminal Ready
22 RI Ring Indicator

Table 2. Pin Designations and Signal Description

Protective Ground: This must be bonded to the chassis or equipment frame. It
may also be connected to Signal Ground.

Transmit Data: Direction-to data communication equipment. Signals on this
circuit are generated by the data terminal equipment for transmission of data to
remote equipment. This signal should be held in the marking condition during
intervals between characters and at all times when no data is being transmitted.

Received Data: Direction-from data communication equipment. Signals on this
circuit are received from remote equipment which transmits data to the terminal.
This signal should be held in the marking condition during intervals between
characters and at all times when no data is being received.

Request-to-send: Direction-to data communication equipment. This signal is
required by the terminal equipment to control the direction of data transmission by
the data communication equipment. On one-way or duplex channels, the' 'on''
condition maintains the data communication equipment in the transmit mode. The
''off'' condition maintains the data communication equipment in the non-transmit
~~- .

On a half duplex channel, the ''on'' condition maintains the data communication
equipment in the transmit mode and inhibits the receive mode. The' 'off'' condition
maintains the data communication equipment in the receive mode.

1/3

TRS-80 MODEL Ill

Clear-to-Send: Direction-from data communication equipment. This signal is
generated by the data communication equipment and indicates whether or not the
data set (modem) is ready to transmit data. The ''on'' condition is an indication to
the data terminal equipment that the data set can accept data on the Transmit Data
circuit. The ''off'' condition is an indication to the data terminal equipment that it
should not transfer data to the data set.

Data Set Ready: Direction-from data communication equipment. This signal
indicates the status of the local data set to the data terminal equipment. The ''on''
condition of this circuit indicates that the data communication equipment is not in
test, talk or dial mode and has completed any timing functions required to complete
call establishment (answer tone, etc.). The ''off'' condition will appear at all other
times and indicates that the data terminal should accept only Ring Indicator signals
and ignore all other signals (appearing on any other interchange circuit).

Data Terminal Ready: Direction-to data communication equipment. This signal
is used to control the switching of the data communication equipment to the
communications channel. The ''on'' condition indicates to data communication
equipment that it should connect to the communications channel and that it should
maintain the connection as long as the ''on'' condition is present. The ''off''
condition causes the data communication equipment to be removed from the
communications channel following any in-process transmission of data.

Ring Indicator: Direction-from communication equipment. The ''on'' condition
of the circuit indicates that a ringing signal is being received on the communications
channel. In general, this means that the data set is being polled and that data
communication is desired by the polling device. The ''off'' condition is held during
the off segment of the ringing cycle (between actual rings) and at all other times
when ringing is not being received.

Carrier Detect (Receive Line Signal Detector): Direction-from data
communication equipment. When ''on'' , this signal indicates that the data set is
receiving a carrier from a remote data set via the communications channel. The
''off'' condition indicates that no carrier is being received or that the signal quality
is unsuitable for data demodulation.

1/4

Index
The prefix "Op" means "Operation Section"; "Ba" means "BASIC Section".
Pages referenced by a letter/number are in the Appendices.

Examples:

Op 3/4 - 8

Ba 2/1, 8/3

A/1, 20

Operation, Chapter 3, pages 4 through 8
BASIC, Chapter 2, page 8; Chapter 8, page 3
Appendix A, pages 1 and 20

Page references in boldface indicate the most important information
for a particular index entry.

Subject Page
Abbreviations Op 3/5, 9/1

A/1
ABS . Ba 1 /4, 7/1

A/13
Accuracy............................ A/18
AC Power (see Connections).... Op 2/3, 14/1
Addition (see Operators-Numeric)
AND.............................. Ba 1/25

A/3
Arithmetic Functions............... Ba 7/1-5

A/13
Arrays

memory requirements A/17
size (DIM)..................... Ba 4/4-5
subroutine examples Ba 6/1-6
types. Ba 6/3
variables . Ba 8/1 O

A/17
ASCII (see Codes) Op 4/2, 5/3

Ba 1/10, 5/2
A/12

ATN............................... Ba 7/1
A/13

AUTO.............................. Ba 2/1
A/3

Base Conversions
decimal/binary/hex. F/1

BASIC Keywords . D/1-2
Baud Rate. Op 1 /2, 3/2, 6/1 ,3,

8/2,3,5,6,
12/19, 13/2

(BREAK) Processing... Op 3/6, 4/2, 12/22

Cass?. Op 3/1-2, 8, 12/15,
13/1

Cassette
connection Op 1 /2, 2/1-3
operation . Op 6/1-6
interface. Op 1 /1, 14/3
1/0............................ Op 12/4
jack pin . Op 14/3

Capitals and Lowercase. Op 4/1 , 12/24

Subject Page
CDBL.............................. Ba 7/2

A/13
Characters

ASCII.......................... Ba 1/10
codes . Ba 8/1 O

C/1-7
declaration. Ba 1 /13
display . Op 12/20
graphics. Op 5/3
input . Op 3/4
Japanese Kana Op 5/5
repeat. Op 4/2
size............................ Op 5/1
space compression Op 5/4
special..................... Op 5/4, 7/1

Ba 5/3
A/1

text............................ Op 5/3
CHA$............................ Ba 5/2-3

A/12
CINT . Ba 7/2

A/13
CLEAR n. Op 4/1

Ba 2/2, 4/4, 5/1
A/1, 3, 8

CLOAD (see Loading) Op 6/3
Ba 2/2

A/3
CLOAD? . Ba 2/3

A/3
CLS............................... Op 7/1

Ba 8/2
A/11

Clock (Real Time) Op 10/1
setting . Op 1 /1, 10/1
reading . Op 10/2
display . Op 10/2
table . Op 12/5
TIME$. Ba 5/8

Codes
ASCII....................... Op 4/2, 5/2
baud........................... Op 8/4
character . C/1-7
control . Op 4/2

C/3

INDEX/1

TRS-80 MODEL Ill

Subject Page
error . B/1-3
graphics . Ba 5/2

C/4-6
HEX........................... Ba 1/10
internal keyword. 0/1
TAB............................... C/5

Command Mode.................... Op 3/5
(see Modes)

Concatenate (+) Ba 1 /22, 5/1
A/2

Conditional Tests Ba 4/15-17
Connections

AC power source Op 2/3, 14/1
cassette . Op 2/3
perpherials . Op 2/1

Constants . Ba 1 /4, 1 O
defined . Ba 1 /5

CONT.............................. Ba 2/3
A/3

Control Codes (see Codes)
COS............................... Ba 7/2

A/13
CSAVE (see Saving)................. Ba 2/3

A/4
CSNG . Ba 7/2

A/13
Cursor. Op 3/4, 8, 5/1 , 12/25

Ba 3/2
Customer Information Inside Back Cover

DATA. Ba 3/10
A/7

Data
conversion Ba 1 /4, 14, 17
handling . Ba 1 /4
manipulating Ba 1 /18-28
numeric . Ba 1 /8, 14
representing . Ba 1 /5
strings . Ba 1 /1 O
storing . Ba 1 /8

Debugging. Ba 2/3, 7
Declaration Characters

(see Characters)
Definition Statements

DEFDBL . Ba 4/3
A/8

DEFINT . Ba 4/2
A/8

DEFSNG . Ba 4/3
A/8

DEFSTR . Ba 4/3
A/8

DELETE. Ba 2/4
A/4

DIM. Ba 4/4-5, 6/1-7
A/9

Disk. Op 1 /1 ,3, 3/1, 3
Division (see Operators-Numeric)
Double-Precision. Ba 1/8-9, 13, 15-16

A/2, 17

INDEX/2

Subject Page
Edit Mode (see Modes)
EDIT.............................. Op 3/6

Ba 2/4
Ba 9/1-7

A/5
ELSE . Ba 4/15

A/11
END............................... Ba 4/5

A/9
ENTER. Op 3/7-8, 4/1
Erase . Ba 9/2

A/1
ERL............................... Ba 8/3

A/14
ERR . Ba 8/3

A/14
ERROR . Ba 4/12

A/10
Error Codes and Messages B/1-3
Execute Mode (see Modes)
EXP............................... Ba 7/3

Exponentiation
A/13

(see Operators-
Numeric) . Ba 3/4

A/7
Expressions

logical . Ba 1 /4
numeric . Ba 1 /3
relational . Ba 1 /4, 24
string. Ba 1 /3
using. Ba 1 /24
symbols . Ba 1 /2

Extra Ignored. Ba 3/9
Field Specifiers, PRINT USING Ba 3/4-5

A/6
File Name . Op 6/3

Ba 2/2-3
FIX................................ Ba 7/3

A/13
FOR ... TO ... STEP/NEXT. Ba 4/9-11

A/10
Forbidden Words (see Reserved Words)
FAE............................... Ba 5/3

A/12
Functions Ba 1/4, 28, 8/1-10

arithmetic. A/13
special . A/14
string . A/12

Glossary. H/1-3
GOSUB . Ba 4/7

A/9
GOTO . Ba 4/6

A/9
Graphics . Ba 8/1-2

codes . Cl 4-6
statements . A/11

Subject Page
Greater Than/Less Than. Ba 1 /23

Header (see READY)................ Op 3/4
HEX Codes (see Codes)
IF ... THEN ... ELSE.............. Ba 4/14-15

A/11
Immediate (see Modes)

line............................ Op 3/4
special keys Op 3/5, 12/15

INKEY$. Ba 5/4
A/12

INP................................ Ba 8/4
A/14

INPUT. Ba 3/8-9, 4/1
A/6

Input/Output. Ba 3/1-13
initialization. Op 11 /1 , 12/1 O
interpretation. Op 3/4
routing Op 9/1 , 12/16
RS-232-C . Op 8/4
statements. A/6

INPUT #-1. Ba 3/12-13, 4/1
A/7

Installation . Op 2/1-3
INT................................ Ba 7/3

A/13
Integer Precision Ba 1 /4, 4/18

Keyboard
description. Op 1 /1, 9/1
input. Op 12/3
using Op 4/1-3, 12/11-12,

C/1-7
Keyword Codes (see Codes)

LEFT$. Ba 5/5
A/12

Left Bracket (see Exponentiation). Ba 3/4
A/2

LEN............................... Ba 5/5
A/12

Less Than/Greater Than............ Ba 1/23
A/2

LET............................... Ba 4/5
A/9

Limits (Program and Memory). A/17
Line

display. Op 12/21
length . Op 7 /2
Immediate . Op 3/4
Input. Op 3/4
program........................ Op 3/5

Line Numbers. Op 3/6
Ba 1/2

Line Printer
description. Op 1 /3, 9/1
interface . Op 14/2
LUST........................... Op 7/1
LPRINT.. Op 7/1

A/6

Subject Page
output. Op 12/4
Print Screen. Op 1 /1, 2/1, 4/2, 7 /5,

12/14, 14/2
using. Op 7/1-5

LIST....................... Op 3/5, 6/3, 7/1
Ba 2/4

A/4
LUST.............................. Ba 2/4

A/4
Loading (CLOAD)

BASIC programs Op 6/3
errors . Op 6/2
SYSTEM tapes Op 6/5
table........................... Op 6/4

LOG............................... Ba 7/3
,A/13

Logical Operators (see Operators) Ba 1 /25-27
Loop . Ba 4/9-11, 5/4
LPRINT. Op 3/5, 7/1

Ba 3/12
A/13

Machine Language CALL. Op 3/3,6
Ba 2/6, 8/7-8

MEM . Ba 8/4
A/14

Memory
available . Ba 8/4-5

A/14
important addresses Op 7/3

D/1
map . Op 12/23
size (see USR, SYSTEM)........ Op 3/3,8
overhead . A/16

MID$. Ba 5/6
A/12

Model I/Model Ill Program Conversion . . . G/1
Modes of Operation

Command (or Immediate) Op 3/4
Ba 2/1, 4/6

A/1
Edit............................ Op 3/6

Ba 9/1-8
A/5

Execute . Op 3/6
System. Op 3/6

Ba 2/6
Monitor Mode (see SYSTEM) Ba 2/6
Multiplication (see Operators-Numeric)
Multiple Statements on One Line

(see Statements)

NEW . Ba 2/5
A/4

NEXT . Ba 4/9-11
A/10

NOT.............................. Ba 1/25
A/3

Object Files (Machine Language)..... Op 3/6
Ba 2/6, 8/7-8

INDEX/3

TRS-80 MODEL Ill

Subject Page

ON ERROR GOTO Ba 4/12
A/10

ON n GOSUB . Ba 4/9
A/9

ON n GOTO . Ba 4/8
A/9

Operators
arithmetic. Ba 1 /19

A/2
hierarchy . Ba 1 /26
logical. Ba 1 /25

A/2
numeric. Ba 1 /19, 26

A/2
relational . Ba 1 /22

A/2
string . Ba 1 /22, 27

A/2
Operating Modes (see Modes)
OR............................... Ba 1/25

A/3
Order of Operations. Ba 1 /26

A/3
OUT............................... Ba 8/5

A/11

Page Controls. Op 7 /3
Parentheses . Ba 1 /26
PEEK.............................. Ba 8/5

A/14
Peripherals Op 1 /2, 2/1 , 3/1 , 2
POINT............................. Ba 8/2

A/14
POKE . Ba 8/5-6

A/11
Port (see INP and OUT) Ba 8/4, 5
POS............................... Ba 8/6

A/14
Power Off . Op 3/2
Power On Op 3/1-2, 13/3
PRINT.. Op 7/1

Ba 3/1-2
A/6

PRINT @ . Ba 3/2
A/6

Printer (see Line Printer)
Print Screen (see Line Printer)
PRINT TAB . Ba 3/3

A/6
PRINT USING . Ba 3/4-8

A/6-7
PRINT #-1. Ba 3/12

A/6
Print Zones. Ba 3/1-2
Program

documentation (REM) Ba 4/14
elements. Ba 1 /2-8
examples . Ba 1 /2
limits. A/16

INDEX/4

Subject Page
statements . Ba 1 /2-3

Ba 4/1-17
A/8

Prompt . Op 3/4
Ba 2/1

Punctuation
colon . Op 3/5

Ba 1/2
exclamation mark. Ba 1 /12, 3/5

A/2,8
period . Op 3/5

Ba 2/4, 3/4
question mark Ba 3/8

A/1
quot~tion mark Op 3/5, 6/3
semi-colon . Ba 3/3

RAM . Op 1 /1 ,2, 3/2-3,
5/4, 12/1, 22

RANDOM........................... Ba 7/4
A/10

READ. Ba 3/10-11
A/7

READY . Op 3/4
REDO . Ba 3/9
Relational Operators (see Operators)
REM.............................. Ba 4/14

A/10
Reserved Words (see Variables) Ba 1/6

A/15
RESET . Op 3/2, 12/15

Ba 8/2
A/11

RESTORE . Ba 3/11
A/7

RESUME . Ba 4/13
A/10

RETURN . Ba 4/7
A/9

RIGHT$. Ba 5/6
A/12

RND............................... Ba 7/4
A/13

ROM . Op 1/2, 3/1, 11/1
ROM Addresses Op 12/24
ROM Subroutines All are in Op:

$CLOCKOFF . 10/2, 12/5
$CLOCKON 10/2, 12/5
$CSHIN 12/6
$CSHWR . 12/7
$CSIN . 12/7
$CSOFF . 12/8
$CSOUT . 12/9
$DATE. 12/10
$DELAY.. 12/10
$1NITIO . 11 /1, 12/10
$KBCHAR . 12/01
$KBLINE . 12/12
$KBWAIT......................... 12/12
$KBBRK . 12/13

Subject Page
$PACHAR . 12/14
$PRSCN . 12/14
$READY . 12/15
$RESET . 12/15
$ROUTE. 9/2, 12/16, 26
$RSINIT 8/8, 12/17, 25
$RSRCV. 12/18, 25
$RSTX . 12/18, 25
$SETCAS . 12/19
$TIME . 10/2, 12/20
$VDCHAR . 12/20
$VDCLS . 12/21
$VDLINE . 12/21

RS-232-C Interface Op 8/1-8, 12/17-18
14/1
1/1-4

RUN . Op 3/5, 9, 6/3
Ba 2/5-6, 3/5, 9, 4/6

A/4
Saving on Cassette (CSAVE) Op 6/2, 12/6
Scrolling. Op 5/2
Searching (see Edit)

BASIC . Op 6/4
Sequence of Execution Ba 4/6-05

A/9
SET . Ba 8/1-2

A/11
SGN............................... Ba 7/4

A/13
(SHIFT). Op 3/7, 4/1-3

A/1
Single-Precision Ba 1 /8, 11, 12, 15-16

A/2, 14
Space Compression Codes (see Codes)
Special Keys. Op 4/1

Command Mode Op 3/5
Execute Mode Op 3/6
Immediate Mode Op 3/5

Specifications . Op 14/1
A/16-17

SOR............................... Ba 7/5
A/14

Start-up Dialog. Op 3/2, 8
Statement. Ba 1 /2-3, 4/1, 4/15

assignment . Ba 4/1
conditional. A/11
defined . Ba 1 /3
definition . Ba 1 /13
functions . A/1 O
graphics . Ba 8/1-2

A/11
special . Ba 8/5

A/11
program . Ba 4/1-15

A/8
STEP . Ba 4/9-11
STOP.............................. Ba 4/6

A/9
String. Ba 5/1-9

arrays . Ba 6/3
comparisons . Ba 5/3

INDEX

Subject Page
data . • Ba 1/10
functions . Ba 5/2, 9

A/12
input/output . Ba 5/2

A/2
operators . Ba 5/4
storage space Ba 5/1

STRING$. Ba 5/7
A/12

STA$. Ba 5/6-8
A/12

Subroutine . Ba 4/6-7
Subtraction (see Operators-Numeric)
Syntax Error . B/1-2
SYSTEM (see Modes) Op 6/5

Ba 2/6
A/4

TAB........................... Op 3/7, 4/2
BA 3/3

Tab Codes (see Codes)................ C/5
TAN............................... Ba 7/5

A/14
Technical Information Op 12/1-26
THEN. Ba 4/15
TIME$. Ba 5/8

A/12
TO . Ba 4/1 0-12
TROFF. Ba 2/7

A/4
TRON.............................. Ba 2/7

A/4
Troubleshooting and Maintenance Op 13/1-3
Type Declaration.Tags Ba 1/12-13

A/2

USING . Ba 3/4-8
USR . Ba 8/7-8

A/14

VAL............................... Ba 5/8
A/12

Variables
classifying Ba 1 /4, 12
counter . Ba 4/9-11
defined . Ba 1 /5
names . Ba 1 /5-6
reserved words Ba 1 /6
simple and subscript Ba 1 /6

VAPRTR.. Ba 8/9-10
A/14

Video Display
brightness adjustment. Op 2/2, 3/1
clearing . Op 12/21
contrast adjustment. Op 2/2, 3/1
description. Op 1 /1 , 7 /1 , 9/1

C/1-7
output. Op 12/4
using. Op 5/1-5

INDEX/5

TRS-80 MODEL Ill

Subject Page
Warranty Back Cover

Z-80 Microprocessor Op 1 /1,2, 3/1, 3,6,
12/1 ,3, 14/1

Ba 8/4,7

Figures and Tables
AND OR NOT . Ba 1 /25
Base Conversions . F/1
Cassette Jack Pin Op 14/3
Character Codes

control: zero-31 . C/2
text: 32-127 . C/3-5
graphic: 128-191 C/6-7
space compression: 192-255....... C/7-8

Connection of Peripherals/Controls . . . Op 2/2
Derived Functions . E/1
Error Codes. 8/1
Glossary . H/1
Keyword Codes . D/1
Memory Map . Op 12/23
Numeric Operators. Ba 1 /26
Numeric Relations Ba 1 /23
Parallel Printer Interface. Op 14/2
Printer Pin Location. Op 14/3
Recommended Levels for Loading Tape Op 6/4
RS-:232-C Signal Conversion .. ·. 1/1
Standard RS-232-C Signal Op 14/1
String Relations Ba 1 /23
Summary Tables

Arithmetic Functions A/13
Characters and Abbreviations A/1

Commands . A/3
Field Specifiers. A/7
Input/Output Statements. A/6
Program Statements A/8
RAM Addresses A/25
Reserved Words A/15
ROM Addresses A/24
Special Functions. A/4
String Functions. A/14

INDEX/6

Customer Information

Service Policy
Radio Shack's nationwide network of service facilities provides quick, convenient,
and reliable repair services for all of its computer products, in most instances.
Warranty service will be performed in accordance with Radio Shack's Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor
costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services
offered by Radio Shack:

1. If any of the warranty seals on any Radio Shack computer products are broken,
Radio Shack reserves the right to refuse to service the equipment or to void any
remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that it is not
within manufacturer's specifications, including, but not limited to, the
installation of any non-Radio Shack parts, components, or replacement boards,
then Radio Shack reserves the right to refuse to service the equipment, void any
remaining warranty, remove and replace any non-Radio Shack part found in the
equipment, and perform whatever modifications are necessary to return the
equipment to original factory manufacturer's specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to original manufacturer's specifications will be charged to the
customer in addition to the normal repair charge.

OWNER REGISTRATION

Please put me on your mailing list to receive all information relating to this product the
Microcomputer Newsletter, advance product information, application hints and tips,
users' suggestions, etc. (Free for one year. After one year, a subscription will be offered at
a nominal fee.)

PRODUCT PURCHASED

TRS-80
MODEL I □

TRS-80

TRS-80
MODEL II □

COLOR COMPUTER □
TRS-80

TRS-80
MODEL Ill □

POCKET COMPUTER □

Name _____________________________ _

Company ____________________________ _

Address ____________________________ _

City _________________ _ State ____ Zip ___ _

CHANGE OF ADDRESS

Product Catalog No. =2...;:;.6_-______ _

Serial No. (if any) ________ _

Purchase Date __________ _

Change to: (New Address) Change from: (Current Listing)
Name _____________________________ _

Company __________________________ _

Address

City _______ _ State

Zip __

Note: In order for us to keep you informed about product changes or improvements,

please mail one of these forms to us if your mailing address changes.

CHANGE OF ADDRESS

Product Catalog No. =2 6-_______ _

Serial No. (if any) _________ _

Purchase Date __________ _

Change to: (New Address) Change from: (Current Listing)
Name ___________________________ _

Company __________________________ _

Address ____________________________ _

City _________ State

Zip __

Note: In order for us to keep you informed about product changes or improvements,

please mail one of these forms to us if your mailing address changes.

ATTN DEPT. 0055

ATTN DEPT. 0055

ATTN DEPT. 0055

RADIO SHACK
4925 PYLON RD.

FT. WORTH, TX 76106

RADIO SHACK

4925 PYLON RD.

FT. WORTH, TX 76106

RADIO SHACK

4925 PYLON RD.

FT. WORTH, TX 76106

PLACE
POSTAGE

HERE

PLACE
POSTAGE

HERE

PLACE
POSTAGE

HERE

Radio Shack Software License
The following are the terms and conditions of the Radio Shack Software License for
copies of Radio Shack software either purchased by the customer, or received with
or as part of hardware purchased by customer:

A. Radio Shack grants to CUSTOMER a personal, non--exclusive. paid up license to
use the Radio Shack computer software programs received. Title to the media
on which the software is recorded (cassette and/or disk) or stored (ROM) is
transfeffed to the CUSTOMER, but not title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce copies of such
software programs except to produce the number of copies required for
personal use by CUSTOMER (if the software allows a backup copy to be made).
and to include Radio Shack's copyright notice on all copies of programs
reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications software
(modified or not, in whole or in part). provided CUSTOMER has purchased one
copy of the software for each one resold. The provisions of this Software
License (paragraphs A, B. and C) shall also be applicable to third parties
purchasing such software from CUSTOMER.

Note
All Radio Shack computer programs are licensed on an "as is" basis without
warranty.

Radio Shack shall have no liability or responsibility to customer or any other person
or entity with respect to any liability, loss or damage caused or alleged to be caused
directly or indirectly by computer equipment or programs sold by Radio Shack.
including but not limited to any interruption of service. loss of business or
anticipatory profits or consequential damages resulting frorn the use or operation of
such computer or computer programs.

Good data processing procedure dictates that the user test the prograrn. run and test
sample sets of data, and run the system _in parallel with the systern previously in use
for a period of time adequate to insure that results of operation of the cornputer or
prograrn are satisfactory.

LIMITED WARRANTY
For a period of 90 days from the date of delivery, Radio Shack warrants to the
original purchaser that the computer hardware unit shall be free from manufac
turing defects. This warranty is only applicable to the original purchaser who
purchased the unit from Radio Shack company-owned retail outlets or duly
authorized Radio Shack franchisees and dealers. This warranty is voided if the
unit is sold or' transferred by purchaser to a third party. This warranty shall be
void if this unit's case or cabinet is opened, if the unit has been subjected to
improper or abnormal use, or if the unit is altered or modified. If a defect occurs
during the warranty period, the unit must" be returned to a Radio Shack store,
franchisee, or dealer for repair, along with the sales ticket or lease agreement.
Purchaser's sole and exclusive remedy in the event of defect is limited to the
correction of the defect by adjustment, repair, replacement, or complete
refund at Radio Shack's election and sole expense. Radio Shack shall have no
obligation to replace or repair expendable items.

Any statements made by Radio Shack and its employees, inclu<iing but not
limited to, statements regarding capacity, suitability for use, or performance of
the unit shall not be deemed a warranty or representation by Radio Shack for
any purpose, nor give rise to any liability or obligation of Radio Shack.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS WARRANTY OR IN THE
RADIO SHACK COMPUTER SALES AGREEMENT, THERE ARE NO
OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL RADIO
SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDIRECT,
SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING
OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

7-80

RADIO SHACK l! A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

8749190-880-SL

TANDY CORPORATION

BELGIUM

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

U. K.

Bl LSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf
	161.pdf
	162.pdf
	163.pdf
	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf
	171.pdf
	172.pdf
	173.pdf
	174.pdf
	175.pdf
	176.pdf
	177.pdf
	178.pdf
	179.pdf
	180.pdf
	181.pdf
	182.pdf
	183.pdf
	184.pdf
	185.pdf
	186.pdf
	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf
	195.pdf
	196.pdf
	197.pdf
	198.pdf
	199.pdf
	200.pdf
	201.pdf
	202.pdf
	203.pdf
	204.pdf
	205.pdf
	206.pdf
	207.pdf
	208.pdf
	209.pdf
	210.pdf
	211.pdf
	212.pdf
	213.pdf
	214.pdf
	215.pdf
	216.pdf
	217.pdf
	218.pdf
	219.pdf
	220.pdf
	221.pdf
	222.pdf
	223.pdf
	224.pdf
	225.pdf
	226.pdf
	227.pdf
	228.pdf
	229.pdf
	230.pdf
	231.pdf
	232.pdf
	233.pdf
	234.pdf
	235.pdf
	236.pdf
	237.pdf
	238.pdf
	239.pdf
	240.pdf
	241.pdf
	242.pdf
	243.pdf
	244.pdf
	245.pdf
	246.pdf
	247.pdf
	248.pdf
	249.pdf
	250.pdf
	251.pdf
	252.pdf
	253.pdf
	254.pdf
	255.pdf
	256.pdf
	257.pdf
	258.pdf
	259.pdf
	260.pdf
	261.pdf
	262.pdf
	263.pdf
	264.pdf
	265.pdf
	266.pdf
	267.pdf
	268.pdf
	269.pdf
	270.pdf
	271.pdf
	272.pdf

